Skip to content
Snippets Groups Projects
omap_gpmc.c 28.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • Dirk Behme's avatar
    Dirk Behme committed
    /*
     * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
     * Rohit Choraria <rohitkc@ti.com>
     *
    
     * SPDX-License-Identifier:	GPL-2.0+
    
    Dirk Behme's avatar
    Dirk Behme committed
     */
    
    #include <common.h>
    #include <asm/io.h>
    #include <asm/errno.h>
    #include <asm/arch/mem.h>
    
    Dirk Behme's avatar
    Dirk Behme committed
    #include <linux/mtd/nand_ecc.h>
    
    #include <linux/bch.h>
    
    #include <linux/compiler.h>
    
    Dirk Behme's avatar
    Dirk Behme committed
    #include <nand.h>
    
    
    #define BADBLOCK_MARKER_LENGTH	2
    #define SECTOR_BYTES		512
    
    #define ECCCLEAR		(0x1 << 8)
    #define ECCRESULTREG1		(0x1 << 0)
    
    /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
    #define BCH4_BIT_PAD		4
    
    
    #ifdef CONFIG_BCH
    static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
    				0x97, 0x79, 0xe5, 0x24, 0xb5};
    #endif
    
    static __maybe_unused struct nand_ecclayout omap_ecclayout;
    
    Dirk Behme's avatar
    Dirk Behme committed
    
    
    /*
     * Driver configurations
     */
    struct omap_nand_info {
    	struct bch_control *control;
    	enum omap_ecc ecc_scheme;
    	int cs;
    };
    
    /* We are wasting a bit of memory but al least we are safe */
    static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
    
    
    Dirk Behme's avatar
    Dirk Behme committed
    /*
     * omap_nand_hwcontrol - Set the address pointers corretly for the
     *			following address/data/command operation
     */
    static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
    				uint32_t ctrl)
    {
    	register struct nand_chip *this = mtd->priv;
    
    	struct omap_nand_info *info = this->priv;
    	int cs = info->cs;
    
    Dirk Behme's avatar
    Dirk Behme committed
    
    	/*
    	 * Point the IO_ADDR to DATA and ADDRESS registers instead
    	 * of chip address
    	 */
    	switch (ctrl) {
    	case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
    
    		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
    
    Dirk Behme's avatar
    Dirk Behme committed
    		break;
    	case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
    
    		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
    
    Dirk Behme's avatar
    Dirk Behme committed
    		break;
    	case NAND_CTRL_CHANGE | NAND_NCE:
    
    		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
    
    Dirk Behme's avatar
    Dirk Behme committed
    		break;
    	}
    
    	if (cmd != NAND_CMD_NONE)
    		writeb(cmd, this->IO_ADDR_W);
    }
    
    
    /* Check wait pin as dev ready indicator */
    
    static int omap_dev_ready(struct mtd_info *mtd)
    
    {
    	return gpmc_cfg->status & (1 << 8);
    }
    
    Dirk Behme's avatar
    Dirk Behme committed
    
    /*
     * gen_true_ecc - This function will generate true ECC value, which
     * can be used when correcting data read from NAND flash memory core
     *
     * @ecc_buf:	buffer to store ecc code
     *
     * @return:	re-formatted ECC value
     */
    static uint32_t gen_true_ecc(uint8_t *ecc_buf)
    {
    	return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
    		((ecc_buf[2] & 0x0F) << 8);
    }
    
    /*
     * omap_correct_data - Compares the ecc read from nand spare area with ECC
     * registers values and corrects one bit error if it has occured
     * Further details can be had from OMAP TRM and the following selected links:
     * http://en.wikipedia.org/wiki/Hamming_code
     * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
     *
     * @mtd:		 MTD device structure
     * @dat:		 page data
     * @read_ecc:		 ecc read from nand flash
     * @calc_ecc:		 ecc read from ECC registers
     *
     * @return 0 if data is OK or corrected, else returns -1
     */
    
    static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
    
    Dirk Behme's avatar
    Dirk Behme committed
    				uint8_t *read_ecc, uint8_t *calc_ecc)
    {
    	uint32_t orig_ecc, new_ecc, res, hm;
    	uint16_t parity_bits, byte;
    	uint8_t bit;
    
    	/* Regenerate the orginal ECC */
    	orig_ecc = gen_true_ecc(read_ecc);
    	new_ecc = gen_true_ecc(calc_ecc);
    	/* Get the XOR of real ecc */
    	res = orig_ecc ^ new_ecc;
    	if (res) {
    		/* Get the hamming width */
    		hm = hweight32(res);
    		/* Single bit errors can be corrected! */
    		if (hm == 12) {
    			/* Correctable data! */
    			parity_bits = res >> 16;
    			bit = (parity_bits & 0x7);
    			byte = (parity_bits >> 3) & 0x1FF;
    			/* Flip the bit to correct */
    			dat[byte] ^= (0x1 << bit);
    		} else if (hm == 1) {
    			printf("Error: Ecc is wrong\n");
    			/* ECC itself is corrupted */
    			return 2;
    		} else {
    			/*
    			 * hm distance != parity pairs OR one, could mean 2 bit
    			 * error OR potentially be on a blank page..
    			 * orig_ecc: contains spare area data from nand flash.
    			 * new_ecc: generated ecc while reading data area.
    			 * Note: if the ecc = 0, all data bits from which it was
    			 * generated are 0xFF.
    			 * The 3 byte(24 bits) ecc is generated per 512byte
    			 * chunk of a page. If orig_ecc(from spare area)
    			 * is 0xFF && new_ecc(computed now from data area)=0x0,
    			 * this means that data area is 0xFF and spare area is
    			 * 0xFF. A sure sign of a erased page!
    			 */
    			if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
    				return 0;
    			printf("Error: Bad compare! failed\n");
    			/* detected 2 bit error */
    			return -1;
    		}
    	}
    	return 0;
    }
    
    
     * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
    
     * @mtd:	MTD device structure
     * @mode:	Read/Write mode
     */
    __maybe_unused
    
    static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
    
    	struct nand_chip	*nand	= mtd->priv;
    
    	struct omap_nand_info	*info	= nand->priv;
    
    	unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
    	unsigned int ecc_algo = 0;
    	unsigned int bch_type = 0;
    	unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
    	u32 ecc_size_config_val = 0;
    	u32 ecc_config_val = 0;
    
    
    	/* configure GPMC for specific ecc-scheme */
    
    	case OMAP_ECC_HAM1_CODE_SW:
    		return;
    	case OMAP_ECC_HAM1_CODE_HW:
    		ecc_algo = 0x0;
    		bch_type = 0x0;
    		bch_wrapmode = 0x00;
    		eccsize0 = 0xFF;
    		eccsize1 = 0xFF;
    		break;
    	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
    	case OMAP_ECC_BCH8_CODE_HW:
    		ecc_algo = 0x1;
    		bch_type = 0x1;
    		if (mode == NAND_ECC_WRITE) {
    			bch_wrapmode = 0x01;
    			eccsize0 = 0;  /* extra bits in nibbles per sector */
    			eccsize1 = 28; /* OOB bits in nibbles per sector */
    		} else {
    			bch_wrapmode = 0x01;
    			eccsize0 = 26; /* ECC bits in nibbles per sector */
    			eccsize1 = 2;  /* non-ECC bits in nibbles per sector */
    
    	case OMAP_ECC_BCH16_CODE_HW:
    		ecc_algo = 0x1;
    		bch_type = 0x2;
    		if (mode == NAND_ECC_WRITE) {
    			bch_wrapmode = 0x01;
    			eccsize0 = 0;  /* extra bits in nibbles per sector */
    			eccsize1 = 52; /* OOB bits in nibbles per sector */
    		} else {
    			bch_wrapmode = 0x01;
    			eccsize0 = 52; /* ECC bits in nibbles per sector */
    			eccsize1 = 0;  /* non-ECC bits in nibbles per sector */
    		}
    		break;
    
    	/* Clear ecc and enable bits */
    	writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
    	/* Configure ecc size for BCH */
    	ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
    	writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
    
    	/* Configure device details for BCH engine */
    	ecc_config_val = ((ecc_algo << 16)	| /* HAM1 | BCHx */
    			(bch_type << 12)	| /* BCH4/BCH8/BCH16 */
    			(bch_wrapmode << 8)	| /* wrap mode */
    			(dev_width << 7)	| /* bus width */
    			(0x0 << 4)		| /* number of sectors */
    			(cs <<  1)		| /* ECC CS */
    			(0x1));			  /* enable ECC */
    	writel(ecc_config_val, &gpmc_cfg->ecc_config);
    
     *  omap_calculate_ecc - Read ECC result
     *  @mtd:	MTD structure
     *  @dat:	unused
     *  @ecc_code:	ecc_code buffer
     *  Using noninverted ECC can be considered ugly since writing a blank
     *  page ie. padding will clear the ECC bytes. This is no problem as
     *  long nobody is trying to write data on the seemingly unused page.
     *  Reading an erased page will produce an ECC mismatch between
     *  generated and read ECC bytes that has to be dealt with separately.
     *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
     *  is used, the result of read will be 0x0 while the ECC offsets of the
     *  spare area will be 0xFF which will result in an ECC mismatch.
    
    static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
    
    				uint8_t *ecc_code)
    {
    
    	struct nand_chip *chip = mtd->priv;
    
    	struct omap_nand_info *info = chip->priv;
    
    	int8_t i = 0, j;
    
    
    	case OMAP_ECC_HAM1_CODE_HW:
    		val = readl(&gpmc_cfg->ecc1_result);
    		ecc_code[0] = val & 0xFF;
    		ecc_code[1] = (val >> 16) & 0xFF;
    		ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
    		break;
    #ifdef CONFIG_BCH
    	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
    #endif
    	case OMAP_ECC_BCH8_CODE_HW:
    
    		ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
    
    		val = readl(ptr);
    		ecc_code[i++] = (val >>  0) & 0xFF;
    
    		ptr--;
    		for (j = 0; j < 3; j++) {
    
    			val = readl(ptr);
    			ecc_code[i++] = (val >> 24) & 0xFF;
    			ecc_code[i++] = (val >> 16) & 0xFF;
    			ecc_code[i++] = (val >>  8) & 0xFF;
    			ecc_code[i++] = (val >>  0) & 0xFF;
    
    	case OMAP_ECC_BCH16_CODE_HW:
    		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
    		ecc_code[i++] = (val >>  8) & 0xFF;
    		ecc_code[i++] = (val >>  0) & 0xFF;
    		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
    		ecc_code[i++] = (val >> 24) & 0xFF;
    		ecc_code[i++] = (val >> 16) & 0xFF;
    		ecc_code[i++] = (val >>  8) & 0xFF;
    		ecc_code[i++] = (val >>  0) & 0xFF;
    		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
    		ecc_code[i++] = (val >> 24) & 0xFF;
    		ecc_code[i++] = (val >> 16) & 0xFF;
    		ecc_code[i++] = (val >>  8) & 0xFF;
    		ecc_code[i++] = (val >>  0) & 0xFF;
    		for (j = 3; j >= 0; j--) {
    			val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
    									);
    			ecc_code[i++] = (val >> 24) & 0xFF;
    			ecc_code[i++] = (val >> 16) & 0xFF;
    			ecc_code[i++] = (val >>  8) & 0xFF;
    			ecc_code[i++] = (val >>  0) & 0xFF;
    		}
    		break;
    
    	default:
    		return -EINVAL;
    	}
    	/* ECC scheme specific syndrome customizations */
    
    	case OMAP_ECC_HAM1_CODE_HW:
    		break;
    #ifdef CONFIG_BCH
    	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
    
    		for (i = 0; i < chip->ecc.bytes; i++)
    			*(ecc_code + i) = *(ecc_code + i) ^
    						bch8_polynomial[i];
    		break;
    #endif
    	case OMAP_ECC_BCH8_CODE_HW:
    		ecc_code[chip->ecc.bytes - 1] = 0x00;
    		break;
    
    	case OMAP_ECC_BCH16_CODE_HW:
    		break;
    
    /*
     * omap_reverse_list - re-orders list elements in reverse order [internal]
     * @list:	pointer to start of list
     * @length:	length of list
    */
    static void omap_reverse_list(u8 *list, unsigned int length)
    {
    	unsigned int i, j;
    	unsigned int half_length = length / 2;
    	u8 tmp;
    	for (i = 0, j = length - 1; i < half_length; i++, j--) {
    		tmp = list[i];
    		list[i] = list[j];
    		list[j] = tmp;
    	}
    }
    
    
    /*
     * omap_correct_data_bch - Compares the ecc read from nand spare area
     * with ECC registers values and corrects one bit error if it has occured
     *
     * @mtd:	MTD device structure
     * @dat:	page data
     * @read_ecc:	ecc read from nand flash (ignored)
     * @calc_ecc:	ecc read from ECC registers
     *
     * @return 0 if data is OK or corrected, else returns -1
     */
    static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
    				uint8_t *read_ecc, uint8_t *calc_ecc)
    {
    	struct nand_chip *chip = mtd->priv;
    
    	struct omap_nand_info *info = chip->priv;
    
    	struct nand_ecc_ctrl *ecc = &chip->ecc;
    
    	uint32_t error_count = 0, error_max;
    
    	uint32_t error_loc[ELM_MAX_ERROR_COUNT];
    
    	for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
    
    		if (calc_ecc[i] != 0x00)
    			ecc_flag = 1;
    	}
    	if (!ecc_flag)
    		return 0;
    
    	/* check for whether its a erased-page */
    
    	ecc_flag = 0;
    
    	for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
    
    		if (read_ecc[i] != 0xff)
    			ecc_flag = 1;
    
    	if (!ecc_flag)
    		return 0;
    
    	/*
    	 * while reading ECC result we read it in big endian.
    	 * Hence while loading to ELM we have rotate to get the right endian.
    	 */
    
    		omap_reverse_list(calc_ecc, ecc->bytes - 1);
    
    	case OMAP_ECC_BCH16_CODE_HW:
    		bch_type = BCH_16_BIT;
    		omap_reverse_list(calc_ecc, ecc->bytes);
    		break;
    
    	/* use elm module to check for errors */
    
    	err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
    	if (err)
    		return err;
    
    
    	/* correct bch error */
    
    	for (count = 0; count < error_count; count++) {
    
    			/* 14th byte in ECC is reserved to match ROM layout */
    
    			error_max = SECTOR_BYTES + (ecc->bytes - 1);
    
    		case OMAP_ECC_BCH16_CODE_HW:
    			error_max = SECTOR_BYTES + ecc->bytes;
    			break;
    
    		default:
    			return -EINVAL;
    		}
    		byte_pos = error_max - (error_loc[count] / 8) - 1;
    		bit_pos  = error_loc[count] % 8;
    		if (byte_pos < SECTOR_BYTES) {
    			dat[byte_pos] ^= 1 << bit_pos;
    			printf("nand: bit-flip corrected @data=%d\n", byte_pos);
    		} else if (byte_pos < error_max) {
    
    			read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
    
    			printf("nand: bit-flip corrected @oob=%d\n", byte_pos -
    								SECTOR_BYTES);
    		} else {
    			err = -EBADMSG;
    			printf("nand: error: invalid bit-flip location\n");
    		}
    	}
    	return (err) ? err : error_count;
    
    #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
    
    #define PREFETCH_CONFIG1_CS_SHIFT	24
    #define PREFETCH_FIFOTHRESHOLD_MAX	0x40
    #define PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
    #define PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
    #define PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
    #define ENABLE_PREFETCH			(1 << 7)
    
    /**
     * omap_prefetch_enable - configures and starts prefetch transfer
     * @fifo_th: fifo threshold to be used for read/ write
     * @count: number of bytes to be transferred
     * @is_write: prefetch read(0) or write post(1) mode
     * @cs: chip select to use
     */
    static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
    {
    	uint32_t val;
    
    	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
    		return -EINVAL;
    
    	if (readl(&gpmc_cfg->prefetch_control))
    		return -EBUSY;
    
    	/* Set the amount of bytes to be prefetched */
    	writel(count, &gpmc_cfg->prefetch_config2);
    
    	val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
    		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
    	writel(val, &gpmc_cfg->prefetch_config1);
    
    	/*  Start the prefetch engine */
    	writel(1, &gpmc_cfg->prefetch_control);
    
    	return 0;
    }
    
    /**
     * omap_prefetch_reset - disables and stops the prefetch engine
     */
    static void omap_prefetch_reset(void)
    {
    	writel(0, &gpmc_cfg->prefetch_control);
    	writel(0, &gpmc_cfg->prefetch_config1);
    }
    
    static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
    {
    	int ret;
    	uint32_t cnt;
    	struct omap_nand_info *info = chip->priv;
    
    	ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
    	if (ret < 0)
    		return ret;
    
    	do {
    		int i;
    
    		cnt = readl(&gpmc_cfg->prefetch_status);
    		cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
    
    		for (i = 0; i < cnt / 4; i++) {
    			*buf++ = readl(CONFIG_SYS_NAND_BASE);
    			len -= 4;
    		}
    	} while (len);
    
    	omap_prefetch_reset();
    
    	return 0;
    }
    
    static void omap_nand_read_prefetch8(struct mtd_info *mtd, uint8_t *buf, int len)
    {
    	int ret;
    	uint32_t head, tail;
    	struct nand_chip *chip = mtd->priv;
    
    	/*
    	 * If the destination buffer is unaligned, start with reading
    	 * the overlap byte-wise.
    	 */
    	head = ((uint32_t) buf) % 4;
    	if (head) {
    		nand_read_buf(mtd, buf, head);
    		buf += head;
    		len -= head;
    	}
    
    	/*
    	 * Only transfer multiples of 4 bytes in a pre-fetched fashion.
    	 * If there's a residue, care for it byte-wise afterwards.
    	 */
    	tail = len % 4;
    
    	ret = __read_prefetch_aligned(chip, (uint32_t *) buf, len - tail);
    	if (ret < 0) {
    		/* fallback in case the prefetch engine is busy */
    		nand_read_buf(mtd, buf, len);
    	} else if (tail) {
    		buf += len - tail;
    		nand_read_buf(mtd, buf, tail);
    	}
    }
    #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
    
    
    /**
     * omap_read_page_bch - hardware ecc based page read function
     * @mtd:	mtd info structure
     * @chip:	nand chip info structure
     * @buf:	buffer to store read data
    
     * @oob_required: caller expects OOB data read to chip->oob_poi
    
     * @page:	page number to read
     *
     */
    static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
    
    				uint8_t *buf, int oob_required, int page)
    
    {
    	int i, eccsize = chip->ecc.size;
    	int eccbytes = chip->ecc.bytes;
    	int eccsteps = chip->ecc.steps;
    	uint8_t *p = buf;
    	uint8_t *ecc_calc = chip->buffers->ecccalc;
    	uint8_t *ecc_code = chip->buffers->ecccode;
    	uint32_t *eccpos = chip->ecc.layout->eccpos;
    	uint8_t *oob = chip->oob_poi;
    	uint32_t data_pos;
    	uint32_t oob_pos;
    
    	data_pos = 0;
    	/* oob area start */
    	oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
    	oob += chip->ecc.layout->eccpos[0];
    
    	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
    				oob += eccbytes) {
    		chip->ecc.hwctl(mtd, NAND_ECC_READ);
    		/* read data */
    
    		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
    
    		chip->read_buf(mtd, p, eccsize);
    
    		/* read respective ecc from oob area */
    
    		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
    
    		chip->read_buf(mtd, oob, eccbytes);
    		/* read syndrome */
    		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
    
    		data_pos += eccsize;
    		oob_pos += eccbytes;
    	}
    
    	for (i = 0; i < chip->ecc.total; i++)
    		ecc_code[i] = chip->oob_poi[eccpos[i]];
    
    	eccsteps = chip->ecc.steps;
    	p = buf;
    
    	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
    		int stat;
    
    		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
    		if (stat < 0)
    			mtd->ecc_stats.failed++;
    		else
    			mtd->ecc_stats.corrected += stat;
    	}
    	return 0;
    }
    
    #endif /* CONFIG_NAND_OMAP_ELM */
    
    /*
     * OMAP3 BCH8 support (with BCH library)
     */
    
     * omap_correct_data_bch_sw - Decode received data and correct errors
    
     * @mtd: MTD device structure
     * @data: page data
     * @read_ecc: ecc read from nand flash
     * @calc_ecc: ecc read from HW ECC registers
     */
    
    static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
    
    				 u_char *read_ecc, u_char *calc_ecc)
    {
    	int i, count;
    	/* cannot correct more than 8 errors */
    	unsigned int errloc[8];
    	struct nand_chip *chip = mtd->priv;
    
    	struct omap_nand_info *info = chip->priv;
    
    	count = decode_bch(info->control, NULL, 512, read_ecc, calc_ecc,
    							NULL, errloc);
    
    	if (count > 0) {
    		/* correct errors */
    		for (i = 0; i < count; i++) {
    			/* correct data only, not ecc bytes */
    			if (errloc[i] < 8*512)
    				data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
    			printf("corrected bitflip %u\n", errloc[i]);
    #ifdef DEBUG
    			puts("read_ecc: ");
    			/*
    			 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
    			 * here!
    			 */
    			for (i = 0; i < 13; i++)
    				printf("%02x ", read_ecc[i]);
    			puts("\n");
    			puts("calc_ecc: ");
    			for (i = 0; i < 13; i++)
    				printf("%02x ", calc_ecc[i]);
    			puts("\n");
    #endif
    		}
    	} else if (count < 0) {
    		puts("ecc unrecoverable error\n");
    	}
    	return count;
    }
    
    /**
     * omap_free_bch - Release BCH ecc resources
     * @mtd: MTD device structure
     */
    static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
    {
    	struct nand_chip *chip = mtd->priv;
    
    	struct omap_nand_info *info = chip->priv;
    
    	if (info->control) {
    		free_bch(info->control);
    		info->control = NULL;
    
    #endif /* CONFIG_BCH */
    
    /**
     * omap_select_ecc_scheme - configures driver for particular ecc-scheme
     * @nand: NAND chip device structure
     * @ecc_scheme: ecc scheme to configure
     * @pagesize: number of main-area bytes per page of NAND device
     * @oobsize: number of OOB/spare bytes per page of NAND device
     */
    static int omap_select_ecc_scheme(struct nand_chip *nand,
    	enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
    
    	struct omap_nand_info	*info		= nand->priv;
    
    	struct nand_ecclayout	*ecclayout	= &omap_ecclayout;
    
    	int eccsteps = pagesize / SECTOR_BYTES;
    	int i;
    
    	switch (ecc_scheme) {
    	case OMAP_ECC_HAM1_CODE_SW:
    		debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
    		/* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
    		 * initialized in nand_scan_tail(), so just set ecc.mode */
    
    		nand->ecc.mode		= NAND_ECC_SOFT;
    		nand->ecc.layout	= NULL;
    
    		break;
    
    	case OMAP_ECC_HAM1_CODE_HW:
    		debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
    		/* check ecc-scheme requirements before updating ecc info */
    		if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
    			printf("nand: error: insufficient OOB: require=%d\n", (
    				(3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
    			return -EINVAL;
    		}
    
    		/* populate ecc specific fields */
    
    		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
    
    		nand->ecc.mode		= NAND_ECC_HW;
    		nand->ecc.strength	= 1;
    		nand->ecc.size		= SECTOR_BYTES;
    		nand->ecc.bytes		= 3;
    		nand->ecc.hwctl		= omap_enable_hwecc;
    		nand->ecc.correct	= omap_correct_data;
    		nand->ecc.calculate	= omap_calculate_ecc;
    		/* define ecc-layout */
    		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
    
    		for (i = 0; i < ecclayout->eccbytes; i++) {
    			if (nand->options & NAND_BUSWIDTH_16)
    				ecclayout->eccpos[i] = i + 2;
    			else
    				ecclayout->eccpos[i] = i + 1;
    		}
    
    		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
    		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
    						BADBLOCK_MARKER_LENGTH;
    		break;
    
    	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
    #ifdef CONFIG_BCH
    		debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
    		/* check ecc-scheme requirements before updating ecc info */
    		if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
    			printf("nand: error: insufficient OOB: require=%d\n", (
    				(13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
    			return -EINVAL;
    		}
    		/* check if BCH S/W library can be used for error detection */
    
    		info->control = init_bch(13, 8, 0x201b);
    		if (!info->control) {
    
    			printf("nand: error: could not init_bch()\n");
    			return -ENODEV;
    		}
    		/* populate ecc specific fields */
    
    		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
    
    		nand->ecc.mode		= NAND_ECC_HW;
    		nand->ecc.strength	= 8;
    		nand->ecc.size		= SECTOR_BYTES;
    		nand->ecc.bytes		= 13;
    
    		nand->ecc.hwctl		= omap_enable_hwecc;
    
    		nand->ecc.correct	= omap_correct_data_bch_sw;
    
    		nand->ecc.calculate	= omap_calculate_ecc;
    
    		/* define ecc-layout */
    		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
    		ecclayout->eccpos[0]	= BADBLOCK_MARKER_LENGTH;
    		for (i = 1; i < ecclayout->eccbytes; i++) {
    			if (i % nand->ecc.bytes)
    				ecclayout->eccpos[i] =
    						ecclayout->eccpos[i - 1] + 1;
    			else
    				ecclayout->eccpos[i] =
    						ecclayout->eccpos[i - 1] + 2;
    		}
    		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
    		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
    						BADBLOCK_MARKER_LENGTH;
    		break;
    #else
    		printf("nand: error: CONFIG_BCH required for ECC\n");
    		return -EINVAL;
    #endif
    
    	case OMAP_ECC_BCH8_CODE_HW:
    #ifdef CONFIG_NAND_OMAP_ELM
    		debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
    		/* check ecc-scheme requirements before updating ecc info */
    		if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
    			printf("nand: error: insufficient OOB: require=%d\n", (
    				(14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
    			return -EINVAL;
    		}
    		/* intialize ELM for ECC error detection */
    		elm_init();
    
    		/* populate ecc specific fields */
    
    		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
    
    		nand->ecc.mode		= NAND_ECC_HW;
    		nand->ecc.strength	= 8;
    		nand->ecc.size		= SECTOR_BYTES;
    		nand->ecc.bytes		= 14;
    
    		nand->ecc.hwctl		= omap_enable_hwecc;
    
    		nand->ecc.correct	= omap_correct_data_bch;
    
    		nand->ecc.calculate	= omap_calculate_ecc;
    
    		nand->ecc.read_page	= omap_read_page_bch;
    		/* define ecc-layout */
    		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
    		for (i = 0; i < ecclayout->eccbytes; i++)
    			ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
    		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
    		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
    						BADBLOCK_MARKER_LENGTH;
    		break;
    #else
    		printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
    		return -EINVAL;
    #endif
    
    
    	case OMAP_ECC_BCH16_CODE_HW:
    #ifdef CONFIG_NAND_OMAP_ELM
    		debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
    		/* check ecc-scheme requirements before updating ecc info */
    		if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
    			printf("nand: error: insufficient OOB: require=%d\n", (
    				(26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
    			return -EINVAL;
    		}
    		/* intialize ELM for ECC error detection */
    		elm_init();
    		/* populate ecc specific fields */
    		nand->ecc.mode		= NAND_ECC_HW;
    		nand->ecc.size		= SECTOR_BYTES;
    		nand->ecc.bytes		= 26;
    		nand->ecc.strength	= 16;
    		nand->ecc.hwctl		= omap_enable_hwecc;
    		nand->ecc.correct	= omap_correct_data_bch;
    		nand->ecc.calculate	= omap_calculate_ecc;
    		nand->ecc.read_page	= omap_read_page_bch;
    		/* define ecc-layout */
    		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
    		for (i = 0; i < ecclayout->eccbytes; i++)
    			ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
    		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
    		ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
    						BADBLOCK_MARKER_LENGTH;
    		break;
    #else
    		printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
    		return -EINVAL;
    #endif
    
    	default:
    		debug("nand: error: ecc scheme not enabled or supported\n");
    		return -EINVAL;
    	}
    
    
    	/* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
    	if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
    		nand->ecc.layout = ecclayout;
    
    
    #ifndef CONFIG_SPL_BUILD
    
    Dirk Behme's avatar
    Dirk Behme committed
    /*
    
     * omap_nand_switch_ecc - switch the ECC operation between different engines
     * (h/w and s/w) and different algorithms (hamming and BCHx)
    
    Dirk Behme's avatar
    Dirk Behme committed
     *
    
     * @hardware		- true if one of the HW engines should be used
     * @eccstrength		- the number of bits that could be corrected
     *			  (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
    
    Dirk Behme's avatar
    Dirk Behme committed
     */
    
    int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
    
    Dirk Behme's avatar
    Dirk Behme committed
    {
    	struct nand_chip *nand;
    	struct mtd_info *mtd;
    
    Dirk Behme's avatar
    Dirk Behme committed
    
    	if (nand_curr_device < 0 ||
    	    nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
    	    !nand_info[nand_curr_device].name) {
    
    		printf("nand: error: no NAND devices found\n");
    		return -ENODEV;
    
    Dirk Behme's avatar
    Dirk Behme committed
    	}
    
    	mtd = &nand_info[nand_curr_device];
    	nand = mtd->priv;
    	nand->options |= NAND_OWN_BUFFERS;
    
    	nand->options &= ~NAND_SUBPAGE_READ;
    
    Dirk Behme's avatar
    Dirk Behme committed
    	/* Setup the ecc configurations again */
    
    	if (hardware) {
    		if (eccstrength == 1) {
    
    			err = omap_select_ecc_scheme(nand,
    					OMAP_ECC_HAM1_CODE_HW,
    					mtd->writesize, mtd->oobsize);
    		} else if (eccstrength == 8) {
    			err = omap_select_ecc_scheme(nand,
    					OMAP_ECC_BCH8_CODE_HW,
    					mtd->writesize, mtd->oobsize);
    		} else {
    			printf("nand: error: unsupported ECC scheme\n");
    			return -EINVAL;
    
    Dirk Behme's avatar
    Dirk Behme committed
    	} else {
    
    		err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
    					mtd->writesize, mtd->oobsize);
    
    Dirk Behme's avatar
    Dirk Behme committed
    	}
    
    	/* Update NAND handling after ECC mode switch */
    
    	if (!err)
    		err = nand_scan_tail(mtd);
    	return err;
    
    Dirk Behme's avatar
    Dirk Behme committed
    }
    
    #endif /* CONFIG_SPL_BUILD */
    
    Dirk Behme's avatar
    Dirk Behme committed
    
    /*
     * Board-specific NAND initialization. The following members of the
     * argument are board-specific:
     * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
     * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
     * - cmd_ctrl: hardwarespecific function for accesing control-lines
     * - waitfunc: hardwarespecific function for accesing device ready/busy line
     * - ecc.hwctl: function to enable (reset) hardware ecc generator
     * - ecc.mode: mode of ecc, see defines
     * - chip_delay: chip dependent delay for transfering data from array to
     *   read regs (tR)
     * - options: various chip options. They can partly be set to inform
     *   nand_scan about special functionality. See the defines for further
     *   explanation
     */
    int board_nand_init(struct nand_chip *nand)
    {
    	int32_t gpmc_config = 0;
    
    Dirk Behme's avatar
    Dirk Behme committed
    	/*
    	 * xloader/Uboot's gpmc configuration would have configured GPMC for
    	 * nand type of memory. The following logic scans and latches on to the
    	 * first CS with NAND type memory.
    	 * TBD: need to make this logic generic to handle multiple CS NAND
    	 * devices.
    	 */
    	while (cs < GPMC_MAX_CS) {
    		/* Check if NAND type is set */
    
    		if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
    
    Dirk Behme's avatar
    Dirk Behme committed
    			/* Found it!! */
    			break;
    		}
    		cs++;
    	}
    	if (cs >= GPMC_MAX_CS) {
    
    		printf("nand: error: Unable to find NAND settings in "
    
    Dirk Behme's avatar
    Dirk Behme committed
    			"GPMC Configuration - quitting\n");
    		return -ENODEV;
    	}
    
    
    	gpmc_config = readl(&gpmc_cfg->config);
    
    Dirk Behme's avatar
    Dirk Behme committed
    	/* Disable Write protect */
    	gpmc_config |= 0x10;
    
    	writel(gpmc_config, &gpmc_cfg->config);
    
    	nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
    	nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
    
    	omap_nand_info[cs].control = NULL;
    	omap_nand_info[cs].cs = cs;
    	nand->priv	= &omap_nand_info[cs];
    
    	nand->cmd_ctrl	= omap_nand_hwcontrol;
    	nand->options	|= NAND_NO_PADDING | NAND_CACHEPRG;
    
    Dirk Behme's avatar
    Dirk Behme committed
    	nand->chip_delay = 100;
    
    	/* configure driver and controller based on NAND device bus-width */
    	gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
    #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
    	nand->options |= NAND_BUSWIDTH_16;
    	writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
    #else
    	nand->options &= ~NAND_BUSWIDTH_16;
    	writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
    #endif
    
    #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
    	err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
    
    			CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
    
    #else
    	/* pagesize and oobsize are not required to configure sw ecc-scheme */
    
    	err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
    			0, 0);
    
    #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
    	/* TODO: Implement for 16-bit bus width */
    
    	if (nand->options & NAND_BUSWIDTH_16)
    		nand->read_buf = nand_read_buf16;
    	else
    
    		nand->read_buf = omap_nand_read_prefetch8;
    
    
    	nand->dev_ready = omap_dev_ready;