Skip to content
Snippets Groups Projects
qfw.c 9.37 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * (C) Copyright 2015 Miao Yan <yanmiaobest@gmail.com>
     *
     * SPDX-License-Identifier:	GPL-2.0+
     */
    
    #include <common.h>
    #include <command.h>
    #include <errno.h>
    #include <malloc.h>
    
    #include <qfw.h>
    
    #include <asm/io.h>
    
    #ifdef CONFIG_GENERATE_ACPI_TABLE
    #include <asm/tables.h>
    #endif
    
    #include <linux/list.h>
    
    static bool fwcfg_present;
    static bool fwcfg_dma_present;
    
    static struct fw_cfg_arch_ops *fwcfg_arch_ops;
    
    
    static LIST_HEAD(fw_list);
    
    
    #ifdef CONFIG_GENERATE_ACPI_TABLE
    /*
     * This function allocates memory for ACPI tables
     *
     * @entry : BIOS linker command entry which tells where to allocate memory
     *          (either high memory or low memory)
     * @addr  : The address that should be used for low memory allcation. If the
     *          memory allocation request is 'ZONE_HIGH' then this parameter will
     *          be ignored.
     * @return: 0 on success, or negative value on failure
     */
    
    static int bios_linker_allocate(struct bios_linker_entry *entry, ulong *addr)
    
    {
    	uint32_t size, align;
    	struct fw_file *file;
    	unsigned long aligned_addr;
    
    	align = le32_to_cpu(entry->alloc.align);
    	/* align must be power of 2 */
    	if (align & (align - 1)) {
    		printf("error: wrong alignment %u\n", align);
    		return -EINVAL;
    	}
    
    	file = qemu_fwcfg_find_file(entry->alloc.file);
    	if (!file) {
    		printf("error: can't find file %s\n", entry->alloc.file);
    		return -ENOENT;
    	}
    
    	size = be32_to_cpu(file->cfg.size);
    
    	/*
    	 * ZONE_HIGH means we need to allocate from high memory, since
    	 * malloc space is already at the end of RAM, so we directly use it.
    	 * If allocation zone is ZONE_FSEG, then we use the 'addr' passed
    	 * in which is low memory
    	 */
    	if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_HIGH) {
    		aligned_addr = (unsigned long)memalign(align, size);
    		if (!aligned_addr) {
    			printf("error: allocating resource\n");
    			return -ENOMEM;
    		}
    	} else if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_FSEG) {
    		aligned_addr = ALIGN(*addr, align);
    	} else {
    		printf("error: invalid allocation zone\n");
    		return -EINVAL;
    	}
    
    	debug("bios_linker_allocate: allocate file %s, size %u, zone %d, align %u, addr 0x%lx\n",
    	      file->cfg.name, size, entry->alloc.zone, align, aligned_addr);
    
    	qemu_fwcfg_read_entry(be16_to_cpu(file->cfg.select),
    			      size, (void *)aligned_addr);
    	file->addr = aligned_addr;
    
    	/* adjust address for low memory allocation */
    	if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_FSEG)
    		*addr = (aligned_addr + size);
    
    	return 0;
    }
    
    /*
     * This function patches ACPI tables previously loaded
     * by bios_linker_allocate()
     *
     * @entry : BIOS linker command entry which tells how to patch
     *          ACPI tables
     * @return: 0 on success, or negative value on failure
     */
    static int bios_linker_add_pointer(struct bios_linker_entry *entry)
    {
    	struct fw_file *dest, *src;
    	uint32_t offset = le32_to_cpu(entry->pointer.offset);
    	uint64_t pointer = 0;
    
    	dest = qemu_fwcfg_find_file(entry->pointer.dest_file);
    	if (!dest || !dest->addr)
    		return -ENOENT;
    	src = qemu_fwcfg_find_file(entry->pointer.src_file);
    	if (!src || !src->addr)
    		return -ENOENT;
    
    	debug("bios_linker_add_pointer: dest->addr 0x%lx, src->addr 0x%lx, offset 0x%x size %u, 0x%llx\n",
    	      dest->addr, src->addr, offset, entry->pointer.size, pointer);
    
    	memcpy(&pointer, (char *)dest->addr + offset, entry->pointer.size);
    	pointer	= le64_to_cpu(pointer);
    	pointer += (unsigned long)src->addr;
    	pointer	= cpu_to_le64(pointer);
    	memcpy((char *)dest->addr + offset, &pointer, entry->pointer.size);
    
    	return 0;
    }
    
    /*
     * This function updates checksum fields of ACPI tables previously loaded
     * by bios_linker_allocate()
     *
     * @entry : BIOS linker command entry which tells where to update ACPI table
     *          checksums
     * @return: 0 on success, or negative value on failure
     */
    static int bios_linker_add_checksum(struct bios_linker_entry *entry)
    {
    	struct fw_file *file;
    	uint8_t *data, cksum = 0;
    	uint8_t *cksum_start;
    
    	file = qemu_fwcfg_find_file(entry->cksum.file);
    	if (!file || !file->addr)
    		return -ENOENT;
    
    	data = (uint8_t *)(file->addr + le32_to_cpu(entry->cksum.offset));
    	cksum_start = (uint8_t *)(file->addr + le32_to_cpu(entry->cksum.start));
    	cksum = table_compute_checksum(cksum_start,
    				       le32_to_cpu(entry->cksum.length));
    	*data = cksum;
    
    	return 0;
    }
    
    /* This function loads and patches ACPI tables provided by QEMU */
    
    ulong write_acpi_tables(ulong addr)
    
    {
    	int i, ret = 0;
    	struct fw_file *file;
    	struct bios_linker_entry *table_loader;
    	struct bios_linker_entry *entry;
    	uint32_t size;
    
    	/* make sure fw_list is loaded */
    	ret = qemu_fwcfg_read_firmware_list();
    	if (ret) {
    		printf("error: can't read firmware file list\n");
    		return addr;
    	}
    
    	file = qemu_fwcfg_find_file("etc/table-loader");
    	if (!file) {
    		printf("error: can't find etc/table-loader\n");
    		return addr;
    	}
    
    	size = be32_to_cpu(file->cfg.size);
    	if ((size % sizeof(*entry)) != 0) {
    		printf("error: table-loader maybe corrupted\n");
    		return addr;
    	}
    
    	table_loader = malloc(size);
    	if (!table_loader) {
    		printf("error: no memory for table-loader\n");
    		return addr;
    	}
    
    	qemu_fwcfg_read_entry(be16_to_cpu(file->cfg.select),
    			      size, table_loader);
    
    	for (i = 0; i < (size / sizeof(*entry)); i++) {
    		entry = table_loader + i;
    		switch (le32_to_cpu(entry->command)) {
    		case BIOS_LINKER_LOADER_COMMAND_ALLOCATE:
    			ret = bios_linker_allocate(entry, &addr);
    			if (ret)
    				goto out;
    			break;
    		case BIOS_LINKER_LOADER_COMMAND_ADD_POINTER:
    			ret = bios_linker_add_pointer(entry);
    			if (ret)
    				goto out;
    			break;
    		case BIOS_LINKER_LOADER_COMMAND_ADD_CHECKSUM:
    			ret = bios_linker_add_checksum(entry);
    			if (ret)
    				goto out;
    			break;
    		default:
    			break;
    		}
    	}
    
    out:
    	if (ret) {
    		struct fw_cfg_file_iter iter;
    		for (file = qemu_fwcfg_file_iter_init(&iter);
    		     !qemu_fwcfg_file_iter_end(&iter);
    		     file = qemu_fwcfg_file_iter_next(&iter)) {
    			if (file->addr) {
    				free((void *)file->addr);
    				file->addr = 0;
    			}
    		}
    	}
    
    	free(table_loader);
    	return addr;
    }
    #endif
    
    
    /* Read configuration item using fw_cfg PIO interface */
    static void qemu_fwcfg_read_entry_pio(uint16_t entry,
    		uint32_t size, void *address)
    {
    
    	debug("qemu_fwcfg_read_entry_pio: entry 0x%x, size %u address %p\n",
    	      entry, size, address);
    
    	return fwcfg_arch_ops->arch_read_pio(entry, size, address);
    
    }
    
    /* Read configuration item using fw_cfg DMA interface */
    static void qemu_fwcfg_read_entry_dma(uint16_t entry,
    		uint32_t size, void *address)
    {
    	struct fw_cfg_dma_access dma;
    
    	dma.length = cpu_to_be32(size);
    	dma.address = cpu_to_be64((uintptr_t)address);
    	dma.control = cpu_to_be32(FW_CFG_DMA_READ);
    
    	/*
    	 * writting FW_CFG_INVALID will cause read operation to resume at
    	 * last offset, otherwise read will start at offset 0
    	 */
    	if (entry != FW_CFG_INVALID)
    		dma.control |= cpu_to_be32(FW_CFG_DMA_SELECT | (entry << 16));
    
    	barrier();
    
    
    	debug("qemu_fwcfg_read_entry_dma: entry 0x%x, size %u address %p, control 0x%x\n",
    	      entry, size, address, be32_to_cpu(dma.control));
    
    	fwcfg_arch_ops->arch_read_dma(&dma);
    
    }
    
    bool qemu_fwcfg_present(void)
    {
    	return fwcfg_present;
    }
    
    bool qemu_fwcfg_dma_present(void)
    {
    	return fwcfg_dma_present;
    }
    
    void qemu_fwcfg_read_entry(uint16_t entry, uint32_t length, void *address)
    {
    	if (fwcfg_dma_present)
    		qemu_fwcfg_read_entry_dma(entry, length, address);
    	else
    		qemu_fwcfg_read_entry_pio(entry, length, address);
    }
    
    int qemu_fwcfg_online_cpus(void)
    {
    	uint16_t nb_cpus;
    
    	if (!fwcfg_present)
    		return -ENODEV;
    
    	qemu_fwcfg_read_entry(FW_CFG_NB_CPUS, 2, &nb_cpus);
    
    	return le16_to_cpu(nb_cpus);
    }
    
    int qemu_fwcfg_read_firmware_list(void)
    {
    	int i;
    	uint32_t count;
    	struct fw_file *file;
    	struct list_head *entry;
    
    	/* don't read it twice */
    	if (!list_empty(&fw_list))
    		return 0;
    
    	qemu_fwcfg_read_entry(FW_CFG_FILE_DIR, 4, &count);
    	if (!count)
    		return 0;
    
    	count = be32_to_cpu(count);
    	for (i = 0; i < count; i++) {
    		file = malloc(sizeof(*file));
    		if (!file) {
    			printf("error: allocating resource\n");
    			goto err;
    		}
    		qemu_fwcfg_read_entry(FW_CFG_INVALID,
    				      sizeof(struct fw_cfg_file), &file->cfg);
    		file->addr = 0;
    		list_add_tail(&file->list, &fw_list);
    	}
    
    	return 0;
    
    err:
    	list_for_each(entry, &fw_list) {
    		file = list_entry(entry, struct fw_file, list);
    		free(file);
    	}
    
    	return -ENOMEM;
    }
    
    struct fw_file *qemu_fwcfg_find_file(const char *name)
    {
    	struct list_head *entry;
    	struct fw_file *file;
    
    	list_for_each(entry, &fw_list) {
    		file = list_entry(entry, struct fw_file, list);
    		if (!strcmp(file->cfg.name, name))
    			return file;
    	}
    
    	return NULL;
    }
    
    struct fw_file *qemu_fwcfg_file_iter_init(struct fw_cfg_file_iter *iter)
    {
    	iter->entry = fw_list.next;
    	return list_entry((struct list_head *)iter->entry,
    			  struct fw_file, list);
    }
    
    struct fw_file *qemu_fwcfg_file_iter_next(struct fw_cfg_file_iter *iter)
    {
    	iter->entry = ((struct list_head *)iter->entry)->next;
    	return list_entry((struct list_head *)iter->entry,
    			  struct fw_file, list);
    }
    
    bool qemu_fwcfg_file_iter_end(struct fw_cfg_file_iter *iter)
    {
    	return iter->entry == &fw_list;
    }
    
    
    void qemu_fwcfg_init(struct fw_cfg_arch_ops *ops)
    
    {
    	uint32_t qemu;
    	uint32_t dma_enabled;
    
    	fwcfg_present = false;
    	fwcfg_dma_present = false;
    
    	fwcfg_arch_ops = NULL;
    
    	if (!ops || !ops->arch_read_pio || !ops->arch_read_dma)
    		return;
    	fwcfg_arch_ops = ops;
    
    
    	qemu_fwcfg_read_entry_pio(FW_CFG_SIGNATURE, 4, &qemu);
    	if (be32_to_cpu(qemu) == QEMU_FW_CFG_SIGNATURE)
    		fwcfg_present = true;
    
    	if (fwcfg_present) {
    		qemu_fwcfg_read_entry_pio(FW_CFG_ID, 1, &dma_enabled);
    		if (dma_enabled & FW_CFG_DMA_ENABLED)
    			fwcfg_dma_present = true;
    	}
    }