Skip to content
Snippets Groups Projects
ddr2_dimm_params.c 9.25 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright 2008 Freescale Semiconductor, Inc.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License
     * Version 2 as published by the Free Software Foundation.
     */
    
    #include <common.h>
    #include <asm/fsl_ddr_sdram.h>
    
    #include "ddr.h"
    /*
     * Calculate the Density of each Physical Rank.
     * Returned size is in bytes.
     *
     * Study these table from Byte 31 of JEDEC SPD Spec.
     *
     *		DDR I	DDR II
     *	Bit	Size	Size
     *	---	-----	------
     *	7 high	512MB	512MB
     *	6	256MB	256MB
     *	5	128MB	128MB
     *	4	 64MB	 16GB
     *	3	 32MB	  8GB
     *	2	 16MB	  4GB
     *	1	  2GB	  2GB
     *	0 low	  1GB	  1GB
     *
     * Reorder Table to be linear by stripping the bottom
     * 2 or 5 bits off and shifting them up to the top.
     *
     */
    
    static unsigned long long
    
    compute_ranksize(unsigned int mem_type, unsigned char row_dens)
    {
    
    	unsigned long long bsize;
    
    
    	/* Bottom 5 bits up to the top. */
    	bsize = ((row_dens >> 5) | ((row_dens & 31) << 3));
    	bsize <<= 27ULL;
    	debug("DDR: DDR II rank density = 0x%08x\n", bsize);
    
    	return bsize;
    }
    
    /*
     * Convert a two-nibble BCD value into a cycle time.
     * While the spec calls for nano-seconds, picos are returned.
     *
     * This implements the tables for bytes 9, 23 and 25 for both
     * DDR I and II.  No allowance for distinguishing the invalid
     * fields absent for DDR I yet present in DDR II is made.
     * (That is, cycle times of .25, .33, .66 and .75 ns are
     * allowed for both DDR II and I.)
     */
    static unsigned int
    convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
    {
    	/* Table look up the lower nibble, allow DDR I & II. */
    	unsigned int tenths_ps[16] = {
    		0,
    		100,
    		200,
    		300,
    		400,
    		500,
    		600,
    		700,
    		800,
    		900,
    		250,	/* This and the next 3 entries valid ... */
    		330,	/* ...  only for tCK calculations. */
    		660,
    		750,
    		0,	/* undefined */
    		0	/* undefined */
    	};
    
    	unsigned int whole_ns = (spd_val & 0xF0) >> 4;
    	unsigned int tenth_ns = spd_val & 0x0F;
    	unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
    
    	return ps;
    }
    
    static unsigned int
    convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
    {
    	unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
    	unsigned int hundredth_ns = spd_val & 0x0F;
    	unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
    
    	return ps;
    }
    
    static unsigned int byte40_table_ps[8] = {
    	0,
    	250,
    	330,
    	500,
    	660,
    	750,
    	0,	/* supposed to be RFC, but not sure what that means */
    	0	/* Undefined */
    };
    
    static unsigned int
    compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
    {
    	unsigned int trfc_ps;
    
    	trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
    		+ byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
    
    	return trfc_ps;
    }
    
    static unsigned int
    compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
    {
    	unsigned int trc_ps;
    
    	trc_ps = trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
    
    	return trc_ps;
    }
    
    /*
     * Determine Refresh Rate.  Ignore self refresh bit on DDR I.
     * Table from SPD Spec, Byte 12, converted to picoseconds and
     * filled in with "default" normal values.
     */
    static unsigned int
    determine_refresh_rate_ps(const unsigned int spd_refresh)
    {
    	unsigned int refresh_time_ps[8] = {
    		15625000,	/* 0 Normal    1.00x */
    		3900000,	/* 1 Reduced    .25x */
    		7800000,	/* 2 Extended   .50x */
    		31300000,	/* 3 Extended  2.00x */
    		62500000,	/* 4 Extended  4.00x */
    		125000000,	/* 5 Extended  8.00x */
    		15625000,	/* 6 Normal    1.00x  filler */
    		15625000,	/* 7 Normal    1.00x  filler */
    	};
    
    	return refresh_time_ps[spd_refresh & 0x7];
    }
    
    /*
     * The purpose of this function is to compute a suitable
     * CAS latency given the DRAM clock period.  The SPD only
     * defines at most 3 CAS latencies.  Typically the slower in
     * frequency the DIMM runs at, the shorter its CAS latency can.
     * be.  If the DIMM is operating at a sufficiently low frequency,
     * it may be able to run at a CAS latency shorter than the
     * shortest SPD-defined CAS latency.
     *
     * If a CAS latency is not found, 0 is returned.
     *
     * Do this by finding in the standard speed bin table the longest
     * tCKmin that doesn't exceed the value of mclk_ps (tCK).
     *
     * An assumption made is that the SDRAM device allows the
     * CL to be programmed for a value that is lower than those
     * advertised by the SPD.  This is not always the case,
     * as those modes not defined in the SPD are optional.
     *
     * CAS latency de-rating based upon values JEDEC Standard No. 79-2C
     * Table 40, "DDR2 SDRAM stanadard speed bins and tCK, tRCD, tRP, tRAS,
     * and tRC for corresponding bin"
     *
     * ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3
     * Not certain if any good value exists for CL=2
     */
    
    				 /* CL2   CL3   CL4   CL5   CL6  CL7*/
    unsigned short ddr2_speed_bins[] = {   0, 5000, 3750, 3000, 2500, 1875 };
    
    
    unsigned int
    compute_derated_DDR2_CAS_latency(unsigned int mclk_ps)
    {
    	const unsigned int num_speed_bins = ARRAY_SIZE(ddr2_speed_bins);
    	unsigned int lowest_tCKmin_found = 0;
    	unsigned int lowest_tCKmin_CL = 0;
    	unsigned int i;
    
    	debug("mclk_ps = %u\n", mclk_ps);
    
    	for (i = 0; i < num_speed_bins; i++) {
    		unsigned int x = ddr2_speed_bins[i];
    		debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
    		      i, x, lowest_tCKmin_found);
    		if (x && x <= mclk_ps && x >= lowest_tCKmin_found ) {
    			lowest_tCKmin_found = x;
    			lowest_tCKmin_CL = i + 2;
    		}
    	}
    
    	debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
    
    	return lowest_tCKmin_CL;
    }
    
    /*
     * ddr_compute_dimm_parameters for DDR2 SPD
     *
     * Compute DIMM parameters based upon the SPD information in spd.
     * Writes the results to the dimm_params_t structure pointed by pdimm.
     *
     * FIXME: use #define for the retvals
     */
    unsigned int
    ddr_compute_dimm_parameters(const ddr2_spd_eeprom_t *spd,
    			     dimm_params_t *pdimm,
    			     unsigned int dimm_number)
    {
    	unsigned int retval;
    
    	if (spd->mem_type) {
    		if (spd->mem_type != SPD_MEMTYPE_DDR2) {
    			printf("DIMM %u: is not a DDR2 SPD.\n", dimm_number);
    			return 1;
    		}
    	} else {
    		memset(pdimm, 0, sizeof(dimm_params_t));
    		return 1;
    	}
    
    	retval = ddr2_spd_check(spd);
    	if (retval) {
    		printf("DIMM %u: failed checksum\n", dimm_number);
    		return 2;
    	}
    
    	/*
    	 * The part name in ASCII in the SPD EEPROM is not null terminated.
    	 * Guarantee null termination here by presetting all bytes to 0
    	 * and copying the part name in ASCII from the SPD onto it
    	 */
    	memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
    	memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
    
    	/* DIMM organization parameters */
    	pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1;
    	pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens);
    	pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
    	pdimm->data_width = spd->dataw;
    	pdimm->primary_sdram_width = spd->primw;
    	pdimm->ec_sdram_width = spd->ecw;
    
    	/* FIXME: what about registered SO-DIMM? */
    	switch (spd->dimm_type) {
    	case 0x01:	/* RDIMM */
    	case 0x10:	/* Mini-RDIMM */
    		pdimm->registered_dimm = 1; /* register buffered */
    		break;
    
    	case 0x02:	/* UDIMM */
    	case 0x04:	/* SO-DIMM */
    	case 0x08:	/* Micro-DIMM */
    	case 0x20:	/* Mini-UDIMM */
    		pdimm->registered_dimm = 0;	/* unbuffered */
    		break;
    
    	default:
    		printf("unknown dimm_type 0x%02X\n", spd->dimm_type);
    		return 1;
    		break;
    	}
    
    	/* SDRAM device parameters */
    	pdimm->n_row_addr = spd->nrow_addr;
    	pdimm->n_col_addr = spd->ncol_addr;
    	pdimm->n_banks_per_sdram_device = spd->nbanks;
    	pdimm->edc_config = spd->config;
    	pdimm->burst_lengths_bitmask = spd->burstl;
    	pdimm->row_density = spd->rank_dens;
    
    	/*
    	 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
    	 * The SPD clk_cycle field (tCKmin) is measured in tenths of
    	 * nanoseconds and represented as BCD.
    	 */
    	pdimm->tCKmin_X_ps
    		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
    	pdimm->tCKmin_X_minus_1_ps
    		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
    	pdimm->tCKmin_X_minus_2_ps
    		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
    
    	pdimm->tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax);
    
    	/*
    	 * Compute CAS latencies defined by SPD
    	 * The SPD caslat_X should have at least 1 and at most 3 bits set.
    	 *
    	 * If cas_lat after masking is 0, the __ilog2 function returns
    	 * 255 into the variable.   This behavior is abused once.
    	 */
    	pdimm->caslat_X  = __ilog2(spd->cas_lat);
    	pdimm->caslat_X_minus_1 = __ilog2(spd->cas_lat
    					  & ~(1 << pdimm->caslat_X));
    	pdimm->caslat_X_minus_2 = __ilog2(spd->cas_lat
    					  & ~(1 << pdimm->caslat_X)
    					  & ~(1 << pdimm->caslat_X_minus_1));
    
    	/* Compute CAS latencies below that defined by SPD */
    	pdimm->caslat_lowest_derated
    		= compute_derated_DDR2_CAS_latency(get_memory_clk_period_ps());
    
    	/* Compute timing parameters */
    	pdimm->tRCD_ps = spd->trcd * 250;
    	pdimm->tRP_ps = spd->trp * 250;
    	pdimm->tRAS_ps = spd->tras * 1000;
    
    	pdimm->tWR_ps = spd->twr * 250;
    	pdimm->tWTR_ps = spd->twtr * 250;
    	pdimm->tRFC_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc);
    
    	pdimm->tRRD_ps = spd->trrd * 250;
    	pdimm->tRC_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc);
    
    	pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
    
    	pdimm->tIS_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
    	pdimm->tIH_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
    	pdimm->tDS_ps
    		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
    	pdimm->tDH_ps
    		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
    
    	pdimm->tRTP_ps = spd->trtp * 250;
    	pdimm->tDQSQ_max_ps = spd->tdqsq * 10;
    	pdimm->tQHS_ps = spd->tqhs * 10;
    
    	return 0;
    }