Skip to content
Snippets Groups Projects
adi_i2c.c 7.32 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * i2c.c - driver for ADI TWI/I2C
    
     * Copyright (c) 2006-2014 Analog Devices Inc.
    
     *
     * Licensed under the GPL-2 or later.
     */
    
    #include <common.h>
    #include <i2c.h>
    
    
    #include <asm/clock.h>
    
    #include <asm/twi.h>
    
    #include <asm/io.h>
    
    static struct twi_regs *i2c_get_base(struct i2c_adapter *adap);
    
    
    /* Every register is 32bit aligned, but only 16bits in size */
    #define ureg(name) u16 name; u16 __pad_##name;
    struct twi_regs {
    	ureg(clkdiv);
    	ureg(control);
    	ureg(slave_ctl);
    	ureg(slave_stat);
    	ureg(slave_addr);
    	ureg(master_ctl);
    	ureg(master_stat);
    	ureg(master_addr);
    	ureg(int_stat);
    	ureg(int_mask);
    	ureg(fifo_ctl);
    	ureg(fifo_stat);
    	char __pad[0x50];
    	ureg(xmt_data8);
    	ureg(xmt_data16);
    	ureg(rcv_data8);
    	ureg(rcv_data16);
    };
    #undef ureg
    
    #ifdef TWI_CLKDIV
    #define TWI0_CLKDIV TWI_CLKDIV
    
    # ifdef CONFIG_SYS_MAX_I2C_BUS
    # undef CONFIG_SYS_MAX_I2C_BUS
    # endif
    #define CONFIG_SYS_MAX_I2C_BUS 1
    
    #endif
    
    
    /*
     * The way speed is changed into duty often results in integer truncation
     * with 50% duty, so we'll force rounding up to the next duty by adding 1
     * to the max.  In practice this will get us a speed of something like
     * 385 KHz.  The other limit is easy to handle as it is only 8 bits.
     */
    #define I2C_SPEED_MAX             400000
    #define I2C_SPEED_TO_DUTY(speed)  (5000000 / (speed))
    #define I2C_DUTY_MAX              (I2C_SPEED_TO_DUTY(I2C_SPEED_MAX) + 1)
    #define I2C_DUTY_MIN              0xff	/* 8 bit limited */
    #define SYS_I2C_DUTY              I2C_SPEED_TO_DUTY(CONFIG_SYS_I2C_SPEED)
    /* Note: duty is inverse of speed, so the comparisons below are correct */
    #if SYS_I2C_DUTY < I2C_DUTY_MAX || SYS_I2C_DUTY > I2C_DUTY_MIN
    
    # error "The I2C hardware can only operate 20KHz - 400KHz"
    
    #endif
    
    /* All transfers are described by this data structure */
    
    struct adi_i2c_msg {
    
    	u8 flags;
    #define I2C_M_COMBO		0x4
    #define I2C_M_STOP		0x2
    #define I2C_M_READ		0x1
    	int len;		/* msg length */
    	u8 *buf;		/* pointer to msg data */
    	int alen;		/* addr length */
    	u8 *abuf;		/* addr buffer */
    };
    
    
    /* Allow msec timeout per ~byte transfer */
    #define I2C_TIMEOUT 10
    
    
    /**
     * wait_for_completion - manage the actual i2c transfer
     *	@msg: the i2c msg
     */
    
    static int wait_for_completion(struct twi_regs *twi, struct adi_i2c_msg *msg)
    
    	u16 int_stat, ctl;
    
    	ulong timebase = get_timer(0);
    
    		int_stat = readw(&twi->int_stat);
    
    
    		if (int_stat & XMTSERV) {
    
    			writew(XMTSERV, &twi->int_stat);
    
    			if (msg->alen) {
    
    				writew(*(msg->abuf++), &twi->xmt_data8);
    
    				--msg->alen;
    			} else if (!(msg->flags & I2C_M_COMBO) && msg->len) {
    
    				writew(*(msg->buf++), &twi->xmt_data8);
    
    				--msg->len;
    			} else {
    
    				ctl = readw(&twi->master_ctl);
    				if (msg->flags & I2C_M_COMBO)
    					writew(ctl | RSTART | MDIR,
    							&twi->master_ctl);
    				else
    					writew(ctl | STOP, &twi->master_ctl);
    
    			}
    		}
    		if (int_stat & RCVSERV) {
    
    			writew(RCVSERV, &twi->int_stat);
    
    			if (msg->len) {
    
    				*(msg->buf++) = readw(&twi->rcv_data8);
    
    				--msg->len;
    			} else if (msg->flags & I2C_M_STOP) {
    
    				ctl = readw(&twi->master_ctl);
    				writew(ctl | STOP, &twi->master_ctl);
    
    			}
    		}
    		if (int_stat & MERR) {
    
    			writew(MERR, &twi->int_stat);
    
    			return msg->len;
    
    		}
    		if (int_stat & MCOMP) {
    
    			writew(MCOMP, &twi->int_stat);
    
    			if (msg->flags & I2C_M_COMBO && msg->len) {
    
    				ctl = readw(&twi->master_ctl);
    				ctl = (ctl & ~RSTART) |
    
    					(min(msg->len, 0xff) << 6) | MEN | MDIR;
    
    				writew(ctl, &twi->master_ctl);
    
    			} else
    				break;
    		}
    
    
    		/* If we were able to do something, reset timeout */
    		if (int_stat)
    			timebase = get_timer(0);
    
    	} while (get_timer(timebase) < I2C_TIMEOUT);
    
    static int i2c_transfer(struct i2c_adapter *adap, uint8_t chip, uint addr,
    			int alen, uint8_t *buffer, int len, uint8_t flags)
    
    	struct twi_regs *twi = i2c_get_base(adap);
    
    	uchar addr_buffer[] = {
    		(addr >>  0),
    		(addr >>  8),
    		(addr >> 16),
    	};
    
    	struct adi_i2c_msg msg = {
    
    		.flags = flags | (len >= 0xff ? I2C_M_STOP : 0),
    		.buf   = buffer,
    		.len   = len,
    		.abuf  = addr_buffer,
    		.alen  = alen,
    	};
    
    	/* wait for things to settle */
    
    	while (readw(&twi->master_stat) & BUSBUSY)
    
    		if (ctrlc())
    			return 1;
    
    	/* Set Transmit device address */
    
    	writew(chip, &twi->master_addr);
    
    
    	/* Clear the FIFO before starting things */
    
    	writew(XMTFLUSH | RCVFLUSH, &twi->fifo_ctl);
    	writew(0, &twi->fifo_ctl);
    
    
    	/* prime the pump */
    	if (msg.alen) {
    
    		len = (msg.flags & I2C_M_COMBO) ? msg.alen : msg.alen + len;
    
    		writew(*(msg.abuf++), &twi->xmt_data8);
    
    		--msg.alen;
    	} else if (!(msg.flags & I2C_M_READ) && msg.len) {
    
    		writew(*(msg.buf++), &twi->xmt_data8);
    
    		--msg.len;
    	}
    
    	/* clear int stat */
    
    	writew(-1, &twi->master_stat);
    	writew(-1, &twi->int_stat);
    	writew(0, &twi->int_mask);
    
    
    	/* Master enable */
    
    	ctl = readw(&twi->master_ctl);
    	ctl = (ctl & FAST) | (min(len, 0xff) << 6) | MEN |
    		((msg.flags & I2C_M_READ) ? MDIR : 0);
    	writew(ctl, &twi->master_ctl);
    
    
    	/* process the rest */
    
    	ret = wait_for_completion(twi, &msg);
    
    		ctl = readw(&twi->master_ctl) & ~MEN;
    		writew(ctl, &twi->master_ctl);
    		ctl = readw(&twi->control) & ~TWI_ENA;
    		writew(ctl, &twi->control);
    		ctl = readw(&twi->control) | TWI_ENA;
    		writew(ctl, &twi->control);
    
    static uint adi_i2c_setspeed(struct i2c_adapter *adap, uint speed)
    
    	struct twi_regs *twi = i2c_get_base(adap);
    
    	u16 clkdiv = I2C_SPEED_TO_DUTY(speed);
    
    	/* Set TWI interface clock */
    	if (clkdiv < I2C_DUTY_MAX || clkdiv > I2C_DUTY_MIN)
    		return -1;
    
    	clkdiv = (clkdiv << 8) | (clkdiv & 0xff);
    	writew(clkdiv, &twi->clkdiv);
    
    	writew(speed > 100000 ? FAST : 0, &twi->master_ctl);
    
    static void adi_i2c_init(struct i2c_adapter *adap, int speed, int slaveaddr)
    
    	struct twi_regs *twi = i2c_get_base(adap);
    	u16 prescale = ((get_i2c_clk() / 1000 / 1000 + 5) / 10) & 0x7F;
    
    
    	/* Set TWI internal clock as 10MHz */
    
    	writew(prescale, &twi->control);
    
    
    	/* Set TWI interface clock as specified */
    
    	i2c_set_bus_speed(speed);
    
    	writew(TWI_ENA | prescale, &twi->control);
    
    static int adi_i2c_read(struct i2c_adapter *adap, uint8_t chip,
    			uint addr, int alen, uint8_t *buffer, int len)
    
    	return i2c_transfer(adap, chip, addr, alen, buffer,
    			len, alen ? I2C_M_COMBO : I2C_M_READ);
    
    static int adi_i2c_write(struct i2c_adapter *adap, uint8_t chip,
    			uint addr, int alen, uint8_t *buffer, int len)
    
    	return i2c_transfer(adap, chip, addr, alen, buffer, len, 0);
    
    static int adi_i2c_probe(struct i2c_adapter *adap, uint8_t chip)
    
    	u8 byte;
    	return adi_i2c_read(adap, chip, 0, 0, &byte, 1);
    
    static struct twi_regs *i2c_get_base(struct i2c_adapter *adap)
    
    	switch (adap->hwadapnr) {
    #if CONFIG_SYS_MAX_I2C_BUS > 2
    	case 2:
    		return (struct twi_regs *)TWI2_CLKDIV;
    
    #endif
    #if CONFIG_SYS_MAX_I2C_BUS > 1
    
    		return (struct twi_regs *)TWI1_CLKDIV;
    
    	case 0:
    		return (struct twi_regs *)TWI0_CLKDIV;
    
    	default:
    		printf("wrong hwadapnr: %d\n", adap->hwadapnr);
    
    U_BOOT_I2C_ADAP_COMPLETE(adi_i2c0, adi_i2c_init, adi_i2c_probe,
    			 adi_i2c_read, adi_i2c_write,
    			 adi_i2c_setspeed,
    			 CONFIG_SYS_I2C_SPEED,
    			 0,
    			 0)
    
    
    #if CONFIG_SYS_MAX_I2C_BUS > 1
    
    U_BOOT_I2C_ADAP_COMPLETE(adi_i2c1, adi_i2c_init, adi_i2c_probe,
    			 adi_i2c_read, adi_i2c_write,
    			 adi_i2c_setspeed,
    			 CONFIG_SYS_I2C_SPEED,
    			 0,
    			 1)
    
    #if CONFIG_SYS_MAX_I2C_BUS > 2
    
    U_BOOT_I2C_ADAP_COMPLETE(adi_i2c2, adi_i2c_init, adi_i2c_probe,
    			 adi_i2c_read, adi_i2c_write,
    			 adi_i2c_setspeed,
    			 CONFIG_SYS_I2C_SPEED,
    			 0,
    			 2)