Skip to content
Snippets Groups Projects
mp_init.c 11.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (C) 2015 Google, Inc
     *
     * SPDX-License-Identifier:	GPL-2.0+
     *
     * Based on code from the coreboot file of the same name
     */
    
    #include <common.h>
    #include <cpu.h>
    #include <dm.h>
    #include <errno.h>
    #include <malloc.h>
    #include <asm/atomic.h>
    #include <asm/cpu.h>
    #include <asm/interrupt.h>
    #include <asm/lapic.h>
    #include <asm/mp.h>
    
    #include <asm/msr.h>
    
    #include <asm/mtrr.h>
    
    #include <asm/processor.h>
    
    #include <asm/sipi.h>
    #include <dm/device-internal.h>
    #include <dm/uclass-internal.h>
    #include <linux/linkage.h>
    
    
    /* Total CPUs include BSP */
    static int num_cpus;
    
    
    /* This also needs to match the sipi.S assembly code for saved MSR encoding */
    struct saved_msr {
    	uint32_t index;
    	uint32_t lo;
    	uint32_t hi;
    } __packed;
    
    
    struct mp_flight_plan {
    	int num_records;
    	struct mp_flight_record *records;
    };
    
    static struct mp_flight_plan mp_info;
    
    struct cpu_map {
    	struct udevice *dev;
    	int apic_id;
    	int err_code;
    };
    
    static inline void barrier_wait(atomic_t *b)
    {
    	while (atomic_read(b) == 0)
    		asm("pause");
    	mfence();
    }
    
    static inline void release_barrier(atomic_t *b)
    {
    	mfence();
    	atomic_set(b, 1);
    }
    
    
    static inline void stop_this_cpu(void)
    {
    	/* Called by an AP when it is ready to halt and wait for a new task */
    	for (;;)
    		cpu_hlt();
    }
    
    
    /* Returns 1 if timeout waiting for APs. 0 if target APs found */
    static int wait_for_aps(atomic_t *val, int target, int total_delay,
    			int delay_step)
    {
    	int timeout = 0;
    	int delayed = 0;
    
    	while (atomic_read(val) != target) {
    		udelay(delay_step);
    		delayed += delay_step;
    		if (delayed >= total_delay) {
    			timeout = 1;
    			break;
    		}
    	}
    
    	return timeout;
    }
    
    static void ap_do_flight_plan(struct udevice *cpu)
    {
    	int i;
    
    	for (i = 0; i < mp_info.num_records; i++) {
    		struct mp_flight_record *rec = &mp_info.records[i];
    
    		atomic_inc(&rec->cpus_entered);
    		barrier_wait(&rec->barrier);
    
    		if (rec->ap_call != NULL)
    			rec->ap_call(cpu, rec->ap_arg);
    	}
    }
    
    
    static int find_cpu_by_apic_id(int apic_id, struct udevice **devp)
    
    {
    	struct udevice *dev;
    
    	*devp = NULL;
    	for (uclass_find_first_device(UCLASS_CPU, &dev);
    	     dev;
    	     uclass_find_next_device(&dev)) {
    		struct cpu_platdata *plat = dev_get_parent_platdata(dev);
    
    		if (plat->cpu_id == apic_id) {
    			*devp = dev;
    			return 0;
    		}
    	}
    
    	return -ENOENT;
    }
    
    /*
     * By the time APs call ap_init() caching has been setup, and microcode has
     * been loaded
     */
    static void ap_init(unsigned int cpu_index)
    {
    	struct udevice *dev;
    	int apic_id;
    	int ret;
    
    	/* Ensure the local apic is enabled */
    	enable_lapic();
    
    	apic_id = lapicid();
    
    	ret = find_cpu_by_apic_id(apic_id, &dev);
    
    	if (ret) {
    		debug("Unknown CPU apic_id %x\n", apic_id);
    		goto done;
    	}
    
    	debug("AP: slot %d apic_id %x, dev %s\n", cpu_index, apic_id,
    	      dev ? dev->name : "(apic_id not found)");
    
    	/* Walk the flight plan */
    	ap_do_flight_plan(dev);
    
    	/* Park the AP */
    	debug("parking\n");
    done:
    	stop_this_cpu();
    }
    
    static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
    	MTRR_FIX_64K_00000_MSR, MTRR_FIX_16K_80000_MSR, MTRR_FIX_16K_A0000_MSR,
    	MTRR_FIX_4K_C0000_MSR, MTRR_FIX_4K_C8000_MSR, MTRR_FIX_4K_D0000_MSR,
    	MTRR_FIX_4K_D8000_MSR, MTRR_FIX_4K_E0000_MSR, MTRR_FIX_4K_E8000_MSR,
    	MTRR_FIX_4K_F0000_MSR, MTRR_FIX_4K_F8000_MSR,
    };
    
    static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
    {
    	msr_t msr;
    
    	msr = msr_read(index);
    	entry->index = index;
    	entry->lo = msr.lo;
    	entry->hi = msr.hi;
    
    	/* Return the next entry */
    	entry++;
    	return entry;
    }
    
    static int save_bsp_msrs(char *start, int size)
    {
    	int msr_count;
    	int num_var_mtrrs;
    	struct saved_msr *msr_entry;
    	int i;
    	msr_t msr;
    
    	/* Determine number of MTRRs need to be saved */
    	msr = msr_read(MTRR_CAP_MSR);
    	num_var_mtrrs = msr.lo & 0xff;
    
    	/* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE */
    	msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
    
    	if ((msr_count * sizeof(struct saved_msr)) > size) {
    		printf("Cannot mirror all %d msrs.\n", msr_count);
    		return -ENOSPC;
    	}
    
    	msr_entry = (void *)start;
    	for (i = 0; i < NUM_FIXED_MTRRS; i++)
    		msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
    
    	for (i = 0; i < num_var_mtrrs; i++) {
    		msr_entry = save_msr(MTRR_PHYS_BASE_MSR(i), msr_entry);
    		msr_entry = save_msr(MTRR_PHYS_MASK_MSR(i), msr_entry);
    	}
    
    	msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry);
    
    	return msr_count;
    }
    
    
    static int load_sipi_vector(atomic_t **ap_countp, int num_cpus)
    
    {
    	struct sipi_params_16bit *params16;
    	struct sipi_params *params;
    	static char msr_save[512];
    	char *stack;
    	ulong addr;
    	int code_len;
    	int size;
    	int ret;
    
    	/* Copy in the code */
    	code_len = ap_start16_code_end - ap_start16;
    	debug("Copying SIPI code to %x: %d bytes\n", AP_DEFAULT_BASE,
    	      code_len);
    	memcpy((void *)AP_DEFAULT_BASE, ap_start16, code_len);
    
    	addr = AP_DEFAULT_BASE + (ulong)sipi_params_16bit - (ulong)ap_start16;
    	params16 = (struct sipi_params_16bit *)addr;
    	params16->ap_start = (uint32_t)ap_start;
    	params16->gdt = (uint32_t)gd->arch.gdt;
    	params16->gdt_limit = X86_GDT_SIZE - 1;
    	debug("gdt = %x, gdt_limit = %x\n", params16->gdt, params16->gdt_limit);
    
    	params = (struct sipi_params *)sipi_params;
    	debug("SIPI 32-bit params at %p\n", params);
    	params->idt_ptr = (uint32_t)x86_get_idt();
    
    	params->stack_size = CONFIG_AP_STACK_SIZE;
    
    	size = params->stack_size * num_cpus;
    
    	stack = memalign(size, 4096);
    	if (!stack)
    		return -ENOMEM;
    	params->stack_top = (u32)(stack + size);
    
    	params->microcode_ptr = 0;
    	params->msr_table_ptr = (u32)msr_save;
    	ret = save_bsp_msrs(msr_save, sizeof(msr_save));
    	if (ret < 0)
    		return ret;
    	params->msr_count = ret;
    
    	params->c_handler = (uint32_t)&ap_init;
    
    	*ap_countp = &params->ap_count;
    	atomic_set(*ap_countp, 0);
    	debug("SIPI vector is ready\n");
    
    	return 0;
    }
    
    static int check_cpu_devices(int expected_cpus)
    {
    	int i;
    
    	for (i = 0; i < expected_cpus; i++) {
    		struct udevice *dev;
    		int ret;
    
    		ret = uclass_find_device(UCLASS_CPU, i, &dev);
    		if (ret) {
    			debug("Cannot find CPU %d in device tree\n", i);
    			return ret;
    		}
    	}
    
    	return 0;
    }
    
    /* Returns 1 for timeout. 0 on success */
    static int apic_wait_timeout(int total_delay, int delay_step)
    {
    	int total = 0;
    	int timeout = 0;
    
    	while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
    		udelay(delay_step);
    		total += delay_step;
    		if (total >= total_delay) {
    			timeout = 1;
    			break;
    		}
    	}
    
    	return timeout;
    }
    
    static int start_aps(int ap_count, atomic_t *num_aps)
    {
    	int sipi_vector;
    	/* Max location is 4KiB below 1MiB */
    	const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
    
    	if (ap_count == 0)
    		return 0;
    
    	/* The vector is sent as a 4k aligned address in one byte */
    	sipi_vector = AP_DEFAULT_BASE >> 12;
    
    	if (sipi_vector > max_vector_loc) {
    		printf("SIPI vector too large! 0x%08x\n",
    		       sipi_vector);
    		return -1;
    	}
    
    	debug("Attempting to start %d APs\n", ap_count);
    
    	if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
    		debug("Waiting for ICR not to be busy...");
    		if (apic_wait_timeout(1000, 50)) {
    			debug("timed out. Aborting.\n");
    			return -1;
    		} else {
    			debug("done.\n");
    		}
    	}
    
    	/* Send INIT IPI to all but self */
    
    	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
    	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
    		    LAPIC_DM_INIT);
    
    	debug("Waiting for 10ms after sending INIT.\n");
    	mdelay(10);
    
    	/* Send 1st SIPI */
    	if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
    		debug("Waiting for ICR not to be busy...");
    		if (apic_wait_timeout(1000, 50)) {
    			debug("timed out. Aborting.\n");
    			return -1;
    		} else {
    			debug("done.\n");
    		}
    	}
    
    
    	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
    	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
    		    LAPIC_DM_STARTUP | sipi_vector);
    
    	debug("Waiting for 1st SIPI to complete...");
    	if (apic_wait_timeout(10000, 50)) {
    		debug("timed out.\n");
    		return -1;
    	} else {
    		debug("done.\n");
    	}
    
    	/* Wait for CPUs to check in up to 200 us */
    	wait_for_aps(num_aps, ap_count, 200, 15);
    
    	/* Send 2nd SIPI */
    	if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
    		debug("Waiting for ICR not to be busy...");
    		if (apic_wait_timeout(1000, 50)) {
    			debug("timed out. Aborting.\n");
    			return -1;
    		} else {
    			debug("done.\n");
    		}
    	}
    
    
    	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
    	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
    		    LAPIC_DM_STARTUP | sipi_vector);
    
    	debug("Waiting for 2nd SIPI to complete...");
    	if (apic_wait_timeout(10000, 50)) {
    		debug("timed out.\n");
    		return -1;
    	} else {
    		debug("done.\n");
    	}
    
    	/* Wait for CPUs to check in */
    	if (wait_for_aps(num_aps, ap_count, 10000, 50)) {
    		debug("Not all APs checked in: %d/%d.\n",
    		      atomic_read(num_aps), ap_count);
    		return -1;
    	}
    
    	return 0;
    }
    
    static int bsp_do_flight_plan(struct udevice *cpu, struct mp_params *mp_params)
    {
    	int i;
    	int ret = 0;
    	const int timeout_us = 100000;
    	const int step_us = 100;
    
    	int num_aps = num_cpus - 1;
    
    
    	for (i = 0; i < mp_params->num_records; i++) {
    		struct mp_flight_record *rec = &mp_params->flight_plan[i];
    
    		/* Wait for APs if the record is not released */
    		if (atomic_read(&rec->barrier) == 0) {
    			/* Wait for the APs to check in */
    			if (wait_for_aps(&rec->cpus_entered, num_aps,
    					 timeout_us, step_us)) {
    				debug("MP record %d timeout.\n", i);
    				ret = -1;
    			}
    		}
    
    		if (rec->bsp_call != NULL)
    			rec->bsp_call(cpu, rec->bsp_arg);
    
    		release_barrier(&rec->barrier);
    	}
    	return ret;
    }
    
    static int init_bsp(struct udevice **devp)
    {
    	char processor_name[CPU_MAX_NAME_LEN];
    	int apic_id;
    	int ret;
    
    	cpu_get_name(processor_name);
    	debug("CPU: %s.\n", processor_name);
    
    
    	lapic_setup();
    
    
    	apic_id = lapicid();
    
    	ret = find_cpu_by_apic_id(apic_id, devp);
    
    	if (ret) {
    		printf("Cannot find boot CPU, APIC ID %d\n", apic_id);
    		return ret;
    	}
    
    	return 0;
    }
    
    int mp_init(struct mp_params *p)
    {
    	int num_aps;
    	atomic_t *ap_count;
    	struct udevice *cpu;
    	int ret;
    
    	/* This will cause the CPUs devices to be bound */
    	struct uclass *uc;
    	ret = uclass_get(UCLASS_CPU, &uc);
    	if (ret)
    		return ret;
    
    	ret = init_bsp(&cpu);
    	if (ret) {
    		debug("Cannot init boot CPU: err=%d\n", ret);
    		return ret;
    	}
    
    	if (p == NULL || p->flight_plan == NULL || p->num_records < 1) {
    		printf("Invalid MP parameters\n");
    		return -1;
    	}
    
    
    	num_cpus = cpu_get_count(cpu);
    	if (num_cpus < 0) {
    		debug("Cannot get number of CPUs: err=%d\n", num_cpus);
    		return num_cpus;
    	}
    
    	if (num_cpus < 2)
    		debug("Warning: Only 1 CPU is detected\n");
    
    	ret = check_cpu_devices(num_cpus);
    
    	if (ret)
    		debug("Warning: Device tree does not describe all CPUs. Extra ones will not be started correctly\n");
    
    	/* Copy needed parameters so that APs have a reference to the plan */
    	mp_info.num_records = p->num_records;
    	mp_info.records = p->flight_plan;
    
    	/* Load the SIPI vector */
    
    	ret = load_sipi_vector(&ap_count, num_cpus);
    
    	if (ap_count == NULL)
    		return -1;
    
    	/*
    	 * Make sure SIPI data hits RAM so the APs that come up will see
    	 * the startup code even if the caches are disabled
    	 */
    	wbinvd();
    
    	/* Start the APs providing number of APs and the cpus_entered field */
    
    	num_aps = num_cpus - 1;
    
    	ret = start_aps(num_aps, ap_count);
    	if (ret) {
    		mdelay(1000);
    		debug("%d/%d eventually checked in?\n", atomic_read(ap_count),
    		      num_aps);
    		return ret;
    	}
    
    	/* Walk the flight plan for the BSP */
    	ret = bsp_do_flight_plan(cpu, p);
    	if (ret) {
    		debug("CPU init failed: err=%d\n", ret);
    		return ret;
    	}
    
    	return 0;
    }
    
    int mp_init_cpu(struct udevice *cpu, void *unused)
    {
    
    	/*
    	 * Multiple APs are brought up simultaneously and they may get the same
    	 * seq num in the uclass_resolve_seq() during device_probe(). To avoid
    	 * this, set req_seq to the reg number in the device tree in advance.
    	 */
    	cpu->req_seq = fdtdec_get_int(gd->fdt_blob, cpu->of_offset, "reg", -1);
    
    
    	return device_probe(cpu);
    }