Newer
Older
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <stm32_rcc.h>
#include <asm/io.h>
#include <asm/arch/stm32.h>
#include <asm/arch/stm32_pwr.h>
#include <dt-bindings/mfd/stm32f7-rcc.h>
#define RCC_CR_HSION BIT(0)
#define RCC_CR_HSEON BIT(16)
#define RCC_CR_HSERDY BIT(17)
#define RCC_CR_HSEBYP BIT(18)
#define RCC_CR_CSSON BIT(19)
#define RCC_CR_PLLON BIT(24)
#define RCC_CR_PLLRDY BIT(25)
#define RCC_CR_PLLSAION BIT(28)
#define RCC_CR_PLLSAIRDY BIT(29)
Toshifumi NISHINAGA
committed
#define RCC_PLLCFGR_PLLM_MASK GENMASK(5, 0)
#define RCC_PLLCFGR_PLLN_MASK GENMASK(14, 6)
#define RCC_PLLCFGR_PLLP_MASK GENMASK(17, 16)
#define RCC_PLLCFGR_PLLQ_MASK GENMASK(27, 24)
#define RCC_PLLCFGR_PLLSRC BIT(22)
#define RCC_PLLCFGR_PLLM_SHIFT 0
#define RCC_PLLCFGR_PLLN_SHIFT 6
#define RCC_PLLCFGR_PLLP_SHIFT 16
#define RCC_PLLCFGR_PLLQ_SHIFT 24
Toshifumi NISHINAGA
committed
#define RCC_CFGR_AHB_PSC_MASK GENMASK(7, 4)
#define RCC_CFGR_APB1_PSC_MASK GENMASK(12, 10)
#define RCC_CFGR_APB2_PSC_MASK GENMASK(15, 13)
#define RCC_CFGR_SW0 BIT(0)
#define RCC_CFGR_SW1 BIT(1)
#define RCC_CFGR_SW_MASK GENMASK(1, 0)
#define RCC_CFGR_SW_HSI 0
#define RCC_CFGR_SW_HSE RCC_CFGR_SW0
#define RCC_CFGR_SW_PLL RCC_CFGR_SW1
#define RCC_CFGR_SWS0 BIT(2)
#define RCC_CFGR_SWS1 BIT(3)
#define RCC_CFGR_SWS_MASK GENMASK(3, 2)
#define RCC_CFGR_SWS_HSI 0
#define RCC_CFGR_SWS_HSE RCC_CFGR_SWS0
#define RCC_CFGR_SWS_PLL RCC_CFGR_SWS1
#define RCC_CFGR_HPRE_SHIFT 4
#define RCC_CFGR_PPRE1_SHIFT 10
#define RCC_CFGR_PPRE2_SHIFT 13
Toshifumi NISHINAGA
committed
#define RCC_PLLCFGR_PLLSAIN_MASK GENMASK(14, 6)
#define RCC_PLLCFGR_PLLSAIP_MASK GENMASK(17, 16)
#define RCC_PLLSAICFGR_PLLSAIN_SHIFT 6
#define RCC_PLLSAICFGR_PLLSAIP_SHIFT 16
#define RCC_PLLSAICFGR_PLLSAIP_4 BIT(16)
#define RCC_PLLSAICFGR_PLLSAIQ_4 BIT(26)
#define RCC_PLLSAICFGR_PLLSAIR_2 BIT(29)
#define RCC_DCKCFGRX_TIMPRE BIT(24)
#define RCC_DCKCFGRX_CK48MSEL BIT(27)
#define RCC_DCKCFGRX_SDMMC1SEL BIT(28)
#define RCC_DCKCFGR2_SDMMC2SEL BIT(29)
/*
* RCC AHB1ENR specific definitions
*/
#define RCC_AHB1ENR_ETHMAC_EN BIT(25)
#define RCC_AHB1ENR_ETHMAC_TX_EN BIT(26)
#define RCC_AHB1ENR_ETHMAC_RX_EN BIT(27)
/*
* RCC APB1ENR specific definitions
*/
#define RCC_APB1ENR_TIM2EN BIT(0)
#define RCC_APB1ENR_PWREN BIT(28)
/*
* RCC APB2ENR specific definitions
*/
#define RCC_APB2ENR_SYSCFGEN BIT(14)
#define RCC_APB2ENR_SAI1EN BIT(22)
static const struct stm32_clk_info stm32f4_clk_info = {
/* 180 MHz */
.sys_pll_psc = {
.pll_n = 360,
.pll_p = 2,
.pll_q = 8,
.ahb_psc = AHB_PSC_1,
.apb1_psc = APB_PSC_4,
.apb2_psc = APB_PSC_2,
},
.has_overdrive = false,
static const struct stm32_clk_info stm32f7_clk_info = {
/* 200 MHz */
.sys_pll_psc = {
.pll_n = 400,
.pll_p = 2,
.pll_q = 8,
.ahb_psc = AHB_PSC_1,
.apb1_psc = APB_PSC_4,
.apb2_psc = APB_PSC_2,
},
.has_overdrive = true,
struct stm32_clk {
struct stm32_rcc_regs *base;
struct stm32_pwr_regs *pwr_regs;
struct stm32_clk_info info;
unsigned long hse_rate;
};
static int configure_clocks(struct udevice *dev)
Toshifumi NISHINAGA
committed
{
struct stm32_clk *priv = dev_get_priv(dev);
struct stm32_rcc_regs *regs = priv->base;
struct stm32_pwr_regs *pwr = priv->pwr_regs;
struct pll_psc *sys_pll_psc = &priv->info.sys_pll_psc;
u32 pllsaicfgr = 0;
Toshifumi NISHINAGA
committed
/* Reset RCC configuration */
setbits_le32(®s->cr, RCC_CR_HSION);
writel(0, ®s->cfgr); /* Reset CFGR */
clrbits_le32(®s->cr, (RCC_CR_HSEON | RCC_CR_CSSON
| RCC_CR_PLLON | RCC_CR_PLLSAION));
writel(0x24003010, ®s->pllcfgr); /* Reset value from RM */
clrbits_le32(®s->cr, RCC_CR_HSEBYP);
writel(0, ®s->cir); /* Disable all interrupts */
Toshifumi NISHINAGA
committed
/* Configure for HSE+PLL operation */
setbits_le32(®s->cr, RCC_CR_HSEON);
while (!(readl(®s->cr) & RCC_CR_HSERDY))
Toshifumi NISHINAGA
committed
;
setbits_le32(®s->cfgr, ((
sys_pll_psc->ahb_psc << RCC_CFGR_HPRE_SHIFT)
| (sys_pll_psc->apb1_psc << RCC_CFGR_PPRE1_SHIFT)
| (sys_pll_psc->apb2_psc << RCC_CFGR_PPRE2_SHIFT)));
Toshifumi NISHINAGA
committed
/* Configure the main PLL */
setbits_le32(®s->pllcfgr, RCC_PLLCFGR_PLLSRC); /* pll source HSE */
clrsetbits_le32(®s->pllcfgr, RCC_PLLCFGR_PLLM_MASK,
sys_pll_psc->pll_m << RCC_PLLCFGR_PLLM_SHIFT);
clrsetbits_le32(®s->pllcfgr, RCC_PLLCFGR_PLLN_MASK,
sys_pll_psc->pll_n << RCC_PLLCFGR_PLLN_SHIFT);
clrsetbits_le32(®s->pllcfgr, RCC_PLLCFGR_PLLP_MASK,
((sys_pll_psc->pll_p >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT);
clrsetbits_le32(®s->pllcfgr, RCC_PLLCFGR_PLLQ_MASK,
sys_pll_psc->pll_q << RCC_PLLCFGR_PLLQ_SHIFT);
Toshifumi NISHINAGA
committed
/* Configure the SAI PLL to get a 48 MHz source */
pllsaicfgr = RCC_PLLSAICFGR_PLLSAIR_2 | RCC_PLLSAICFGR_PLLSAIQ_4 |
RCC_PLLSAICFGR_PLLSAIP_4;
pllsaicfgr |= 192 << RCC_PLLSAICFGR_PLLSAIN_SHIFT;
writel(pllsaicfgr, ®s->pllsaicfgr);
Toshifumi NISHINAGA
committed
/* Enable the main PLL */
setbits_le32(®s->cr, RCC_CR_PLLON);
while (!(readl(®s->cr) & RCC_CR_PLLRDY))
Toshifumi NISHINAGA
committed
;
if (priv->info.v2) { /*stm32f7 case */
/* select PLLSAI as 48MHz clock source */
setbits_le32(®s->dckcfgr2, RCC_DCKCFGRX_CK48MSEL);
/* select 48MHz as SDMMC1 clock source */
clrbits_le32(®s->dckcfgr2, RCC_DCKCFGRX_SDMMC1SEL);
/* select 48MHz as SDMMC2 clock source */
clrbits_le32(®s->dckcfgr2, RCC_DCKCFGR2_SDMMC2SEL);
} else { /* stm32f4 case */
/* select PLLSAI as 48MHz clock source */
setbits_le32(®s->dckcfgr, RCC_DCKCFGRX_CK48MSEL);
/* select 48MHz as SDMMC1 clock source */
clrbits_le32(®s->dckcfgr, RCC_DCKCFGRX_SDMMC1SEL);
}
/* Enable the SAI PLL */
setbits_le32(®s->cr, RCC_CR_PLLSAION);
while (!(readl(®s->cr) & RCC_CR_PLLSAIRDY))
;
setbits_le32(®s->apb1enr, RCC_APB1ENR_PWREN);
if (priv->info.has_overdrive) {
/*
* Enable high performance mode
* System frequency up to 200 MHz
*/
setbits_le32(&pwr->cr1, PWR_CR1_ODEN);
/* Infinite wait! */
while (!(readl(&pwr->csr1) & PWR_CSR1_ODRDY))
;
/* Enable the Over-drive switch */
setbits_le32(&pwr->cr1, PWR_CR1_ODSWEN);
/* Infinite wait! */
while (!(readl(&pwr->csr1) & PWR_CSR1_ODSWRDY))
;
}
Toshifumi NISHINAGA
committed
stm32_flash_latency_cfg(5);
clrbits_le32(®s->cfgr, (RCC_CFGR_SW0 | RCC_CFGR_SW1));
setbits_le32(®s->cfgr, RCC_CFGR_SW_PLL);
Toshifumi NISHINAGA
committed
while ((readl(®s->cfgr) & RCC_CFGR_SWS_MASK) !=
Toshifumi NISHINAGA
committed
RCC_CFGR_SWS_PLL)
;
/* gate the SAI clock, needed for MMC 1&2 clocks */
setbits_le32(®s->apb2enr, RCC_APB2ENR_SAI1EN);
Toshifumi NISHINAGA
committed
#ifdef CONFIG_ETH_DESIGNWARE
/* gate the SYSCFG clock, needed to set RMII ethernet interface */
setbits_le32(®s->apb2enr, RCC_APB2ENR_SYSCFGEN);
#endif
Toshifumi NISHINAGA
committed
return 0;
}
static unsigned long stm32_clk_pll48clk_rate(struct stm32_clk *priv,
{
struct stm32_rcc_regs *regs = priv->base;
u16 pllq, pllm, pllsain, pllsaip;
bool pllsai;
pllq = (readl(®s->pllcfgr) & RCC_PLLCFGR_PLLQ_MASK)
>> RCC_PLLCFGR_PLLQ_SHIFT;
if (priv->info.v2) /*stm32f7 case */
pllsai = readl(®s->dckcfgr2) & RCC_DCKCFGRX_CK48MSEL;
else
pllsai = readl(®s->dckcfgr) & RCC_DCKCFGRX_CK48MSEL;
if (pllsai) {
/* PLL48CLK is selected from PLLSAI, get PLLSAI value */
pllm = (readl(®s->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
pllsain = ((readl(®s->pllsaicfgr) & RCC_PLLCFGR_PLLSAIN_MASK)
>> RCC_PLLSAICFGR_PLLSAIN_SHIFT);
pllsaip = ((((readl(®s->pllsaicfgr) & RCC_PLLCFGR_PLLSAIP_MASK)
>> RCC_PLLSAICFGR_PLLSAIP_SHIFT) + 1) << 1);
return ((priv->hse_rate / pllm) * pllsain) / pllsaip;
}
/* PLL48CLK is selected from PLLQ */
static bool stm32_get_timpre(struct stm32_clk *priv)
{
struct stm32_rcc_regs *regs = priv->base;
u32 val;
if (priv->info.v2) /*stm32f7 case */
val = readl(®s->dckcfgr2);
else
val = readl(®s->dckcfgr);
/* get timer prescaler */
return !!(val & RCC_DCKCFGRX_TIMPRE);
}
static u32 stm32_get_hclk_rate(struct stm32_rcc_regs *regs, u32 sysclk)
{
u8 shift;
/* Prescaler table lookups for clock computation */
u8 ahb_psc_table[16] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9
};
shift = ahb_psc_table[(
(readl(®s->cfgr) & RCC_CFGR_AHB_PSC_MASK)
>> RCC_CFGR_HPRE_SHIFT)];
return sysclk >> shift;
};
static u8 stm32_get_apb_shift(struct stm32_rcc_regs *regs, enum apb apb)
{
/* Prescaler table lookups for clock computation */
u8 apb_psc_table[8] = {
0, 0, 0, 0, 1, 2, 3, 4
};
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
if (apb == APB1)
return apb_psc_table[(
(readl(®s->cfgr) & RCC_CFGR_APB1_PSC_MASK)
>> RCC_CFGR_PPRE1_SHIFT)];
else /* APB2 */
return apb_psc_table[(
(readl(®s->cfgr) & RCC_CFGR_APB2_PSC_MASK)
>> RCC_CFGR_PPRE2_SHIFT)];
};
static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk,
enum apb apb)
{
struct stm32_rcc_regs *regs = priv->base;
u8 shift = stm32_get_apb_shift(regs, apb);
if (stm32_get_timpre(priv))
/*
* if APB prescaler is configured to a
* division factor of 1, 2 or 4
*/
switch (shift) {
case 0:
case 1:
case 2:
return stm32_get_hclk_rate(regs, sysclk);
default:
return (sysclk >> shift) * 4;
}
else
/*
* if APB prescaler is configured to a
* division factor of 1
*/
if (shift == 0)
return sysclk;
else
return (sysclk >> shift) * 2;
};
static ulong stm32_clk_get_rate(struct clk *clk)
{
struct stm32_clk *priv = dev_get_priv(clk->dev);
struct stm32_rcc_regs *regs = priv->base;
u32 sysclk = 0;
u16 pllm, plln, pllp;
if ((readl(®s->cfgr) & RCC_CFGR_SWS_MASK) ==
RCC_CFGR_SWS_PLL) {
pllm = (readl(®s->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
plln = ((readl(®s->pllcfgr) & RCC_PLLCFGR_PLLN_MASK)
>> RCC_PLLCFGR_PLLN_SHIFT);
pllp = ((((readl(®s->pllcfgr) & RCC_PLLCFGR_PLLP_MASK)
>> RCC_PLLCFGR_PLLP_SHIFT) + 1) << 1);
vco = (priv->hse_rate / pllm) * plln;
sysclk = vco / pllp;
} else {
return -EINVAL;
}
switch (clk->id) {
/*
* AHB CLOCK: 3 x 32 bits consecutive registers are used :
* AHB1, AHB2 and AHB3
*/
case STM32F7_AHB1_CLOCK(GPIOA) ... STM32F7_AHB3_CLOCK(QSPI):
return stm32_get_hclk_rate(regs, sysclk);
/* APB1 CLOCK */
case STM32F7_APB1_CLOCK(TIM2) ... STM32F7_APB1_CLOCK(UART8):
/* For timer clock, an additionnal prescaler is used*/
switch (clk->id) {
case STM32F7_APB1_CLOCK(TIM2):
case STM32F7_APB1_CLOCK(TIM3):
case STM32F7_APB1_CLOCK(TIM4):
case STM32F7_APB1_CLOCK(TIM5):
case STM32F7_APB1_CLOCK(TIM6):
case STM32F7_APB1_CLOCK(TIM7):
case STM32F7_APB1_CLOCK(TIM12):
case STM32F7_APB1_CLOCK(TIM13):
case STM32F7_APB1_CLOCK(TIM14):
return stm32_get_timer_rate(priv, sysclk, APB1);
}
return (sysclk >> stm32_get_apb_shift(regs, APB1));
/* APB2 CLOCK */
case STM32F7_APB2_CLOCK(TIM1) ... STM32F7_APB2_CLOCK(LTDC):
/*
* particular case for SDMMC1 and SDMMC2 :
* 48Mhz source clock can be from main PLL or from
* SAI PLL
*/
switch (clk->id) {
case STM32F7_APB2_CLOCK(SDMMC1):
if (readl(®s->dckcfgr2) & RCC_DCKCFGRX_SDMMC1SEL)
/* System clock is selected as SDMMC1 clock */
return sysclk;
else
return stm32_clk_pll48clk_rate(priv, vco);
break;
case STM32F7_APB2_CLOCK(SDMMC2):
if (readl(®s->dckcfgr2) & RCC_DCKCFGR2_SDMMC2SEL)
/* System clock is selected as SDMMC2 clock */
return sysclk;
else
return stm32_clk_pll48clk_rate(priv, vco);
/* For timer clock, an additionnal prescaler is used*/
case STM32F7_APB2_CLOCK(TIM1):
case STM32F7_APB2_CLOCK(TIM8):
case STM32F7_APB2_CLOCK(TIM9):
case STM32F7_APB2_CLOCK(TIM10):
case STM32F7_APB2_CLOCK(TIM11):
return stm32_get_timer_rate(priv, sysclk, APB2);
break;
return (sysclk >> stm32_get_apb_shift(regs, APB2));
pr_err("clock index %ld out of range\n", clk->id);
return -EINVAL;
}
}
static ulong stm32_set_rate(struct clk *clk, ulong rate)
{
return 0;
}
static int stm32_clk_enable(struct clk *clk)
{
struct stm32_clk *priv = dev_get_priv(clk->dev);
struct stm32_rcc_regs *regs = priv->base;
u32 offset = clk->id / 32;
u32 bit_index = clk->id % 32;
debug("%s: clkid = %ld, offset from AHB1ENR is %d, bit_index = %d\n",
__func__, clk->id, offset, bit_index);
setbits_le32(®s->ahb1enr + offset, BIT(bit_index));
Toshifumi NISHINAGA
committed
static int stm32_clk_probe(struct udevice *dev)
{
struct ofnode_phandle_args args;
struct udevice *fixed_clock_dev = NULL;
struct clk clk;
debug("%s\n", __func__);
struct stm32_clk *priv = dev_get_priv(dev);
fdt_addr_t addr;
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
priv->base = (struct stm32_rcc_regs *)addr;
switch (dev_get_driver_data(dev)) {
case STM32F4:
memcpy(&priv->info, &stm32f4_clk_info,
sizeof(struct stm32_clk_info));
break;
case STM32F7:
memcpy(&priv->info, &stm32f7_clk_info,
sizeof(struct stm32_clk_info));
break;
default:
return -EINVAL;
}
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/* retrieve HSE frequency (external oscillator) */
err = uclass_get_device_by_name(UCLASS_CLK, "clk-hse",
&fixed_clock_dev);
if (err) {
pr_err("Can't find fixed clock (%d)", err);
return err;
}
err = clk_request(fixed_clock_dev, &clk);
if (err) {
pr_err("Can't request %s clk (%d)", fixed_clock_dev->name,
err);
return err;
}
/*
* set pllm factor accordingly to the external oscillator
* frequency (HSE). For STM32F4 and STM32F7, we want VCO
* freq at 1MHz
* if input PLL frequency is 25Mhz, divide it by 25
*/
clk.id = 0;
priv->hse_rate = clk_get_rate(&clk);
if (priv->hse_rate < 1000000) {
pr_err("%s: unexpected HSE clock rate = %ld \"n", __func__,
priv->hse_rate);
return -EINVAL;
}
priv->info.sys_pll_psc.pll_m = priv->hse_rate / 1000000;
if (priv->info.has_overdrive) {
err = dev_read_phandle_with_args(dev, "st,syscfg", NULL, 0, 0,
&args);
if (err) {
debug("%s: can't find syscon device (%d)\n", __func__,
err);
return err;
}
priv->pwr_regs = (struct stm32_pwr_regs *)ofnode_get_addr(args.node);
return 0;
}
static int stm32_clk_of_xlate(struct clk *clk, struct ofnode_phandle_args *args)
{
debug("%s(clk=%p)\n", __func__, clk);
if (args->args_count != 2) {
debug("Invaild args_count: %d\n", args->args_count);
return -EINVAL;
}
if (args->args_count)
clk->id = args->args[1];
else
clk->id = 0;
return 0;
}
static struct clk_ops stm32_clk_ops = {
.of_xlate = stm32_clk_of_xlate,
.enable = stm32_clk_enable,
.get_rate = stm32_clk_get_rate,
U_BOOT_DRIVER(stm32fx_clk) = {
.name = "stm32fx_rcc_clock",
.id = UCLASS_CLK,
.ops = &stm32_clk_ops,
.probe = stm32_clk_probe,
.priv_auto_alloc_size = sizeof(struct stm32_clk),
.flags = DM_FLAG_PRE_RELOC,