Skip to content
Snippets Groups Projects
cmd_nand.c 41.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    /*
     * Driver for NAND support, Rick Bronson
     * borrowed heavily from:
     * (c) 1999 Machine Vision Holdings, Inc.
     * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
     *
     */
    
    #include <common.h>
    #include <command.h>
    #include <malloc.h>
    #include <asm/io.h>
    
    #ifdef CONFIG_SHOW_BOOT_PROGRESS
    # include <status_led.h>
    # define SHOW_BOOT_PROGRESS(arg)	show_boot_progress(arg)
    #else
    # define SHOW_BOOT_PROGRESS(arg)
    #endif
    
    #if (CONFIG_COMMANDS & CFG_CMD_NAND)
    
    #include <linux/mtd/nftl.h>
    #include <linux/mtd/nand.h>
    #include <linux/mtd/nand_ids.h>
    
    /*
     * Definition of the out of band configuration structure
     */
    struct nand_oob_config {
    	int ecc_pos[6];		/* position of ECC bytes inside oob */
    	int badblock_pos;	/* position of bad block flag inside oob -1 = inactive */
    	int eccvalid_pos;	/* position of ECC valid flag inside oob -1 = inactive */
    } oob_config = { {0}, 0, 0};
    
    #define	NAND_DEBUG
    #undef	ECC_DEBUG
    #undef	PSYCHO_DEBUG
    #undef	NFTL_DEBUG
    
    #define CONFIG_MTD_NAND_ECC  /* enable ECC */
    /* #define CONFIG_MTD_NAND_ECC_JFFS2 */
    
    /*
     * Function Prototypes
     */
    static void nand_print(struct nand_chip *nand);
    static int nand_rw (struct nand_chip* nand, int cmd,
    	    size_t start, size_t len,
    	    size_t * retlen, u_char * buf);
    static int nand_erase(struct nand_chip* nand, size_t ofs, size_t len);
    static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
    		 size_t * retlen, u_char *buf, u_char *ecc_code);
    static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
    			   size_t * retlen, const u_char * buf, u_char * ecc_code);
    #ifdef CONFIG_MTD_NAND_ECC
    static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
    static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
    #endif
    
    static struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};
    
    /* Current NAND Device	*/
    static int curr_device = -1;
    
    /* ------------------------------------------------------------------------- */
    
    int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
    {
        int rcode = 0;
    
        switch (argc) {
        case 0:
        case 1:
    	printf ("Usage:\n%s\n", cmdtp->usage);
    	return 1;
        case 2:
            if (strcmp(argv[1],"info") == 0) {
    		int i;
    
    		putc ('\n');
    
    		for (i=0; i<CFG_MAX_NAND_DEVICE; ++i) {
    			if(nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN)
    				continue; /* list only known devices */
    			printf ("Device %d: ", i);
    			nand_print(&nand_dev_desc[i]);
    		}
    		return 0;
    
    	} else if (strcmp(argv[1],"device") == 0) {
    		if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
    			puts ("\nno devices available\n");
    			return 1;
    		}
    		printf ("\nDevice %d: ", curr_device);
    		nand_print(&nand_dev_desc[curr_device]);
    		return 0;
    	}
    	printf ("Usage:\n%s\n", cmdtp->usage);
    	return 1;
        case 3:
    	if (strcmp(argv[1],"device") == 0) {
    		int dev = (int)simple_strtoul(argv[2], NULL, 10);
    
    		printf ("\nDevice %d: ", dev);
    		if (dev >= CFG_MAX_NAND_DEVICE) {
    			puts ("unknown device\n");
    			return 1;
    		}
    		nand_print(&nand_dev_desc[dev]);
    		/*nand_print (dev);*/
    
    		if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) {
    			return 1;
    		}
    
    		curr_device = dev;
    
    		puts ("... is now current device\n");
    
    		return 0;
    	}
    
    	printf ("Usage:\n%s\n", cmdtp->usage);
    	return 1;
        default:
    	/* at least 4 args */
    
    	if (strcmp(argv[1],"read") == 0 || strcmp(argv[1],"write") == 0) {
    		ulong addr = simple_strtoul(argv[2], NULL, 16);
    		ulong off  = simple_strtoul(argv[3], NULL, 16);
    		ulong size = simple_strtoul(argv[4], NULL, 16);
    		int cmd    = (strcmp(argv[1],"read") == 0);
    		int ret, total;
    
    		printf ("\nNAND %s: device %d offset %ld, size %ld ... ",
    			cmd ? "read" : "write", curr_device, off, size);
    
    		ret = nand_rw(nand_dev_desc + curr_device, cmd, off, size,
    			     &total, (u_char*)addr);
    
    		printf ("%d bytes %s: %s\n", total, cmd ? "read" : "write",
    			ret ? "ERROR" : "OK");
    
    		return ret;
    	} else if (strcmp(argv[1],"erase") == 0) {
    		ulong off = simple_strtoul(argv[2], NULL, 16);
    		ulong size = simple_strtoul(argv[3], NULL, 16);
    		int ret;
    
    		printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
    			curr_device, off, size);
    
    		ret = nand_erase (nand_dev_desc + curr_device, off, size);
    
    		printf("%s\n", ret ? "ERROR" : "OK");
    
    		return ret;
    	} else {
    		printf ("Usage:\n%s\n", cmdtp->usage);
    		rcode = 1;
    	}
    
    	return rcode;
        }
    }
    
    int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
    {
    	char *boot_device = NULL;
    	char *ep;
    	int dev;
    	ulong cnt;
    	ulong addr;
    	ulong offset = 0;
    	image_header_t *hdr;
    	int rcode = 0;
    	switch (argc) {
    	case 1:
    		addr = CFG_LOAD_ADDR;
    		boot_device = getenv ("bootdevice");
    		break;
    	case 2:
    		addr = simple_strtoul(argv[1], NULL, 16);
    		boot_device = getenv ("bootdevice");
    		break;
    	case 3:
    		addr = simple_strtoul(argv[1], NULL, 16);
    		boot_device = argv[2];
    		break;
    	case 4:
    		addr = simple_strtoul(argv[1], NULL, 16);
    		boot_device = argv[2];
    		offset = simple_strtoul(argv[3], NULL, 16);
    		break;
    	default:
    		printf ("Usage:\n%s\n", cmdtp->usage);
    		SHOW_BOOT_PROGRESS (-1);
    		return 1;
    	}
    
    	if (!boot_device) {
    		puts ("\n** No boot device **\n");
    		SHOW_BOOT_PROGRESS (-1);
    		return 1;
    	}
    
    	dev = simple_strtoul(boot_device, &ep, 16);
    
    	if ((dev >= CFG_MAX_NAND_DEVICE) ||
    	    (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) {
    		printf ("\n** Device %d not available\n", dev);
    		SHOW_BOOT_PROGRESS (-1);
    		return 1;
    	}
    
    	printf ("\nLoading from device %d: %s at 0x%lX (offset 0x%lX)\n",
    		dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR,
    		offset);
    
    	if (nand_rw (nand_dev_desc + dev, 1, offset,
    		    SECTORSIZE, NULL, (u_char *)addr)) {
    		printf ("** Read error on %d\n", dev);
    		SHOW_BOOT_PROGRESS (-1);
    		return 1;
    	}
    
    	hdr = (image_header_t *)addr;
    
    	if (ntohl(hdr->ih_magic) == IH_MAGIC) {
    
    		print_image_hdr (hdr);
    
    		cnt = (ntohl(hdr->ih_size) + sizeof(image_header_t));
    		cnt -= SECTORSIZE;
    	} else {
    		printf ("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
    		SHOW_BOOT_PROGRESS (-1);
    		return 1;
    	}
    
    	if (nand_rw (nand_dev_desc + dev, 1, offset + SECTORSIZE, cnt,
    		    NULL, (u_char *)(addr+SECTORSIZE))) {
    		printf ("** Read error on %d\n", dev);
    		SHOW_BOOT_PROGRESS (-1);
    		return 1;
    	}
    
    	/* Loading ok, update default load address */
    
    	load_addr = addr;
    
    	/* Check if we should attempt an auto-start */
    	if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
    		char *local_args[2];
    		extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
    
    		local_args[0] = argv[0];
    		local_args[1] = NULL;
    
    		printf ("Automatic boot of image at addr 0x%08lX ...\n", addr);
    
    		do_bootm (cmdtp, 0, 1, local_args);
    		rcode = 1;
    	}
    	return rcode;
    }
    
    static int nand_rw (struct nand_chip* nand, int cmd,
    	    size_t start, size_t len,
    	    size_t * retlen, u_char * buf)
    {
    	int noecc, ret = 0, n, total = 0;
    	char eccbuf[6];
    
    	while(len) {
    		/* The ECC will not be calculated correctly if
    		   less than 512 is written or read */
    		noecc = (start != (start | 0x1ff) + 1) ||	(len < 0x200);
    		if (cmd)
    			ret = nand_read_ecc(nand, start, len,
    					   &n, (u_char*)buf,
    					   noecc ? NULL : eccbuf);
    		else
    			ret = nand_write_ecc(nand, start, len,
    					    &n, (u_char*)buf,
    					    noecc ? NULL : eccbuf);
    
    		if (ret)
    			break;
    
    		start  += n;
    		buf   += n;
    		total += n;
    		len   -= n;
    	}
    	if (retlen)
    		*retlen = total;
    
    	return ret;
    }
    
    static void nand_print(struct nand_chip *nand)
     {
    	printf("%s at 0x%lX,\n"
    	       "\t  %d chip%s %s, size %d MB, \n"
    	       "\t  total size %ld MB, sector size %ld kB\n",
    	       nand->name, nand->IO_ADDR, nand->numchips,
    	       nand->numchips>1 ? "s" : "", nand->chips_name,
    	       1 << (nand->chipshift - 20),
    	       nand->totlen >> 20, nand->erasesize >> 10);
    
    	if (nand->nftl_found) {
    		struct NFTLrecord *nftl = &nand->nftl;
    		unsigned long bin_size, flash_size;
    
    		bin_size = nftl->nb_boot_blocks * nand->erasesize;
    		flash_size = (nftl->nb_blocks - nftl->nb_boot_blocks) * nand->erasesize;
    
    		printf("\t  NFTL boot record:\n"
    		       "\t    Binary partition: size %ld%s\n"
    		       "\t    Flash disk partition: size %ld%s, offset 0x%lx\n",
    		       bin_size > (1 << 20) ? bin_size >> 20 : bin_size >> 10,
    		       bin_size > (1 << 20) ? "MB" : "kB",
    		       flash_size > (1 << 20) ? flash_size >> 20 : flash_size >> 10,
    		       flash_size > (1 << 20) ? "MB" : "kB", bin_size);
    	} else {
    		puts ("\t  No NFTL boot record found.\n");
    	}
    }
    
    /* ------------------------------------------------------------------------- */
    
    /* This function is needed to avoid calls of the __ashrdi3 function. */
    static int shr(int val, int shift)
     {
    	return val >> shift;
    }
    
    static int NanD_WaitReady(struct nand_chip *nand)
    {
    	/* This is inline, to optimise the common case, where it's ready instantly */
    	int ret = 0;
            NAND_WAIT_READY(nand);
    
    	return ret;
    }
    
    /* NanD_Command: Send a flash command to the flash chip */
    
    static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
    {
    	unsigned long nandptr = nand->IO_ADDR;
    
    	/* Assert the CLE (Command Latch Enable) line to the flash chip */
    	NAND_CTL_SETCLE(nandptr);
    
    	/* Send the command */
    	WRITE_NAND_COMMAND(command, nandptr);
    
    	/* Lower the CLE line */
    	NAND_CTL_CLRCLE(nandptr);
    
    	return NanD_WaitReady(nand);
    }
    
    /* NanD_Address: Set the current address for the flash chip */
    
    static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
      {
      unsigned long nandptr;
      int i;
    
      nandptr = nand->IO_ADDR;
    
    	/* Assert the ALE (Address Latch Enable) line to the flash chip */
      NAND_CTL_SETALE(nandptr);
    
      /* Send the address */
      /* Devices with 256-byte page are addressed as:
         Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
         * there is no device on the market with page256
         and more than 24 bits.
         Devices with 512-byte page are addressed as:
         Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
         * 25-31 is sent only if the chip support it.
         * bit 8 changes the read command to be sent
         (NAND_CMD_READ0 or NAND_CMD_READ1).
    	 */
    
      if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
        WRITE_NAND_ADDRESS(ofs, nandptr);
    
      ofs = ofs >> nand->page_shift;
    
      if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE)
        for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8)
          WRITE_NAND_ADDRESS(ofs, nandptr);
    
      /* Lower the ALE line */
      NAND_CTL_CLRALE(nandptr);
    
      /* Wait for the chip to respond */
      return NanD_WaitReady(nand);
      }
    
    /* NanD_SelectChip: Select a given flash chip within the current floor */
    
    static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
    {
    	/* Wait for it to be ready */
    	return NanD_WaitReady(nand);
    }
    
    /* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
    
    static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
    {
    	int mfr, id, i;
    
          NAND_ENABLE_CE(nand);  /* set pin low */
    	/* Reset the chip */
    	if (NanD_Command(nand, NAND_CMD_RESET)) {
    #ifdef NAND_DEBUG
    		printf("NanD_Command (reset) for %d,%d returned true\n",
    		       floor, chip);
    #endif
          NAND_DISABLE_CE(nand);  /* set pin high */
    		return 0;
    	}
    
    	/* Read the NAND chip ID: 1. Send ReadID command */
    	if (NanD_Command(nand, NAND_CMD_READID)) {
    #ifdef NAND_DEBUG
    		printf("NanD_Command (ReadID) for %d,%d returned true\n",
    		       floor, chip);
    #endif
          NAND_DISABLE_CE(nand);  /* set pin high */
    		return 0;
    	}
    
    	/* Read the NAND chip ID: 2. Send address byte zero */
    	NanD_Address(nand, ADDR_COLUMN, 0);
    
    	/* Read the manufacturer and device id codes from the device */
    
    	mfr = READ_NAND(nand->IO_ADDR);
    
    	id = READ_NAND(nand->IO_ADDR);
    
            NAND_DISABLE_CE(nand);  /* set pin high */
    	/* No response - return failure */
    	if (mfr == 0xff || mfr == 0)
              {
              printf("NanD_Command (ReadID) got %d %d\n", mfr, id);
              return 0;
              }
    
    	/* Check it's the same as the first chip we identified.
    	 * M-Systems say that any given nand_chip device should only
    	 * contain _one_ type of flash part, although that's not a
    	 * hardware restriction. */
    	if (nand->mfr) {
    		if (nand->mfr == mfr && nand->id == id)
    			return 1;	/* This is another the same the first */
    		else
    			printf("Flash chip at floor %d, chip %d is different:\n",
    			       floor, chip);
    	}
    
    	/* Print and store the manufacturer and ID codes. */
    	for (i = 0; nand_flash_ids[i].name != NULL; i++) {
    		if (mfr == nand_flash_ids[i].manufacture_id &&
    		    id == nand_flash_ids[i].model_id) {
    #ifdef NAND_DEBUG
    			printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
    			       "Chip ID: 0x%2.2X (%s)\n", mfr, id,
    			       nand_flash_ids[i].name);
    #endif
    			if (!nand->mfr) {
    				nand->mfr = mfr;
    				nand->id = id;
    				nand->chipshift =
    				    nand_flash_ids[i].chipshift;
    				nand->page256 = nand_flash_ids[i].page256;
    				if (nand->page256) {
    					nand->oobblock = 256;
    					nand->oobsize = 8;
    					nand->page_shift = 8;
    				} else {
    					nand->oobblock = 512;
    					nand->oobsize = 16;
    					nand->page_shift = 9;
    				}
    				nand->pageadrlen =
    				    nand_flash_ids[i].pageadrlen;
    				nand->erasesize =
    				    nand_flash_ids[i].erasesize;
    				nand->chips_name =
    				    nand_flash_ids[i].name;
    				return 1;
    			}
    			return 0;
    		}
    	}
    
    
    #ifdef NAND_DEBUG
    	/* We haven't fully identified the chip. Print as much as we know. */
    	printf("Unknown flash chip found: %2.2X %2.2X\n",
    	       id, mfr);
    #endif
    
    	return 0;
    }
    
    /* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
    
    static void NanD_ScanChips(struct nand_chip *nand)
    {
    	int floor, chip;
    	int numchips[NAND_MAX_FLOORS];
    	int maxchips = NAND_MAX_CHIPS;
    	int ret = 1;
    
    	nand->numchips = 0;
    	nand->mfr = 0;
    	nand->id = 0;
    
    
    	/* For each floor, find the number of valid chips it contains */
    	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
    		ret = 1;
    		numchips[floor] = 0;
    		for (chip = 0; chip < maxchips && ret != 0; chip++) {
    
    			ret = NanD_IdentChip(nand, floor, chip);
    			if (ret) {
    				numchips[floor]++;
    				nand->numchips++;
    			}
    		}
    	}
    
    	/* If there are none at all that we recognise, bail */
    	if (!nand->numchips) {
    		puts ("No flash chips recognised.\n");
    		return;
    	}
    
    	/* Allocate an array to hold the information for each chip */
    	nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
    	if (!nand->chips) {
    		puts ("No memory for allocating chip info structures\n");
    		return;
    	}
    
    	ret = 0;
    
    	/* Fill out the chip array with {floor, chipno} for each
    	 * detected chip in the device. */
    	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
    		for (chip = 0; chip < numchips[floor]; chip++) {
    			nand->chips[ret].floor = floor;
    			nand->chips[ret].chip = chip;
    			nand->chips[ret].curadr = 0;
    			nand->chips[ret].curmode = 0x50;
    			ret++;
    		}
    	}
    
    	/* Calculate and print the total size of the device */
    	nand->totlen = nand->numchips * (1 << nand->chipshift);
    
    #ifdef NAND_DEBUG
    	printf("%d flash chips found. Total nand_chip size: %ld MB\n",
    	       nand->numchips, nand->totlen >> 20);
    #endif
    }
    #ifdef CONFIG_MTD_NAND_ECC
    /* we need to be fast here, 1 us per read translates to 1 second per meg */
    static void nand_fast_copy (unsigned char *source, unsigned char *dest, long cntr)
      {
      while (cntr > 16)
        {
        *dest++ = *source++;
        *dest++ = *source++;
        *dest++ = *source++;
        *dest++ = *source++;
        *dest++ = *source++;
        *dest++ = *source++;
        *dest++ = *source++;
        *dest++ = *source++;
        *dest++ = *source++;
        *dest++ = *source++;
        *dest++ = *source++;
        *dest++ = *source++;
        *dest++ = *source++;
        *dest++ = *source++;
        *dest++ = *source++;
        *dest++ = *source++;
        cntr -= 16;
        }
      while (cntr > 0)
        {
        *dest++ = *source++;
        cntr--;
        }
      }
    #endif
    /* we need to be fast here, 1 us per read translates to 1 second per meg */
    static void nand_fast_read(unsigned char *data_buf, int cntr, unsigned long nandptr)
      {
      while (cntr > 16)
        {
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        *data_buf++ = READ_NAND(nandptr);
        cntr -= 16;
        }
      while (cntr > 0)
        {
        *data_buf++ = READ_NAND(nandptr);
        cntr--;
        }
      }
    
    /* This routine is made available to other mtd code via
     * inter_module_register.  It must only be accessed through
     * inter_module_get which will bump the use count of this module.  The
     * addresses passed back in mtd are valid as long as the use count of
     * this module is non-zero, i.e. between inter_module_get and
     * inter_module_put.  Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
     */
    
    /*
     * NAND read with ECC
     */
    static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
    		 size_t * retlen, u_char *buf, u_char *ecc_code)
    {
    	int col, page;
    	int ecc_status = 0;
    #ifdef CONFIG_MTD_NAND_ECC
    	int j;
    	int ecc_failed = 0;
    	u_char *data_poi;
    	u_char ecc_calc[6];
    #endif
    	unsigned long nandptr = nand->IO_ADDR;
    
    	/* Do not allow reads past end of device */
    	if ((start + len) > nand->totlen) {
    		printf ("nand_read_ecc: Attempt read beyond end of device %x %x %x\n", (uint) start, (uint) len, (uint) nand->totlen);
    		*retlen = 0;
    		return -1;
    	}
    
    	/* First we calculate the starting page */
    	page = shr(start, nand->page_shift);
    
    	/* Get raw starting column */
    	col = start & (nand->oobblock - 1);
    
    	/* Initialize return value */
    	*retlen = 0;
    
    	/* Select the NAND device */
    	NAND_ENABLE_CE(nand);  /* set pin low */
    
    	/* Loop until all data read */
    	while (*retlen < len) {
    
    
    #ifdef CONFIG_MTD_NAND_ECC
    
    		/* Do we have this page in cache ? */
    		if (nand->cache_page == page)
    			goto readdata;
    		/* Send the read command */
    		NanD_Command(nand, NAND_CMD_READ0);
                    NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col);
    		/* Read in a page + oob data */
    		nand_fast_read(nand->data_buf, nand->oobblock + nand->oobsize, nandptr);
    
    		/* copy data into cache, for read out of cache and if ecc fails */
    		if (nand->data_cache)
    			memcpy (nand->data_cache, nand->data_buf, nand->oobblock + nand->oobsize);
    
    		/* Pick the ECC bytes out of the oob data */
    		for (j = 0; j < 6; j++)
    			ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
    
    		/* Calculate the ECC and verify it */
    		/* If block was not written with ECC, skip ECC */
    		if (oob_config.eccvalid_pos != -1 &&
    		    (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {
    
    			nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
    			switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
    			case -1:
    				printf ("nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
    				ecc_failed++;
    				break;
    			case 1:
    			case 2:	/* transfer ECC corrected data to cache */
    				memcpy (nand->data_cache, nand->data_buf, 256);
    				break;
    			}
    		}
    
    		if (oob_config.eccvalid_pos != -1 &&
    		    nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {
    
    			nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
    			switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
    			case -1:
    				printf ("nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
    				ecc_failed++;
    				break;
    			case 1:
    			case 2:	/* transfer ECC corrected data to cache */
    				if (nand->data_cache)
    					memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
    				break;
    			}
    		}
    readdata:
    		/* Read the data from ECC data buffer into return buffer */
    		data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
    		data_poi += col;
    		if ((*retlen + (nand->oobblock - col)) >= len) {
    			nand_fast_copy (data_poi, buf + *retlen, len - *retlen);
    			*retlen = len;
    		} else {
    			nand_fast_copy (data_poi, buf + *retlen, nand->oobblock - col);
    			*retlen += nand->oobblock - col;
    		}
    		/* Set cache page address, invalidate, if ecc_failed */
    		nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;
    
    		ecc_status += ecc_failed;
    		ecc_failed = 0;
    
    #else
    		/* Send the read command */
    		NanD_Command(nand, NAND_CMD_READ0);
                    NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col);
    		/* Read the data directly into the return buffer */
    		if ((*retlen + (nand->oobblock - col)) >= len) {
    			nand_fast_read(buf + *retlen, len - *retlen, nandptr);
    			*retlen = len;
    			/* We're done */
    			continue;
    		} else {
    			nand_fast_read(buf + *retlen, nand->oobblock - col, nandptr);
    			*retlen += nand->oobblock - col;
    			}
    #endif
    		/* For subsequent reads align to page boundary. */
    		col = 0;
    		/* Increment page address */
    		page++;
    	}
    
    	/* De-select the NAND device */
          NAND_DISABLE_CE(nand);  /* set pin high */
    
    	/*
    	 * Return success, if no ECC failures, else -EIO
    	 * fs driver will take care of that, because
    	 * retlen == desired len and result == -EIO
    	 */
    	return ecc_status ? -1 : 0;
    }
    
    
    /*
     *	Nand_page_program function is used for write and writev !
     */
    static int nand_write_page (struct nand_chip *nand,
    			    int page, int col, int last, u_char * ecc_code)
    {
    
    	int i;
    #ifdef CONFIG_MTD_NAND_ECC
    	unsigned long nandptr = nand->IO_ADDR;
    #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
    	int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
    #endif
    #endif
    	/* pad oob area */
    	for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
    		nand->data_buf[i] = 0xff;
    
    #ifdef CONFIG_MTD_NAND_ECC
    	/* Zero out the ECC array */
    	for (i = 0; i < 6; i++)
    		ecc_code[i] = 0x00;
    
    	/* Read back previous written data, if col > 0 */
    	if (col) {
    		NanD_Command(nand, NAND_CMD_READ0);
                    NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col);
    		for (i = 0; i < col; i++)
    			nand->data_buf[i] = READ_NAND (nandptr);
    	}
    
    	/* Calculate and write the ECC if we have enough data */
    	if ((col < nand->eccsize) && (last >= nand->eccsize)) {
    		nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
    		for (i = 0; i < 3; i++)
    			nand->data_buf[(nand->oobblock + oob_config.ecc_pos[i])] = ecc_code[i];
    		if (oob_config.eccvalid_pos != -1)
    			nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] = 0xf0;
    	}
    
    	/* Calculate and write the second ECC if we have enough data */
    	if ((nand->oobblock == 512) && (last == nand->oobblock)) {
    		nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
    		for (i = 3; i < 6; i++)
    			nand->data_buf[(nand->oobblock + oob_config.ecc_pos[i])] = ecc_code[i];
    		if (oob_config.eccvalid_pos != -1)
    			nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] &= 0x0f;
    	}
    #endif
    	/* Prepad for partial page programming !!! */
    	for (i = 0; i < col; i++)
    		nand->data_buf[i] = 0xff;
    
    	/* Postpad for partial page programming !!! oob is already padded */
    	for (i = last; i < nand->oobblock; i++)
    		nand->data_buf[i] = 0xff;
    
    	/* Send command to begin auto page programming */
    	NanD_Command(nand, NAND_CMD_SEQIN);
    	NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col);
    
    	/* Write out complete page of data */
    	for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
              WRITE_NAND(nand->data_buf[i], nand->IO_ADDR);
    
    	/* Send command to actually program the data */
            NanD_Command(nand, NAND_CMD_PAGEPROG);
            NanD_Command(nand, NAND_CMD_STATUS);
    
    	/* See if device thinks it succeeded */
    	if (READ_NAND(nand->IO_ADDR) & 0x01) {
    		printf ("nand_write_ecc: " "Failed write, page 0x%08x, ", page);
    		return -1;
    	}
    #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
    	/*
    	 * The NAND device assumes that it is always writing to
    	 * a cleanly erased page. Hence, it performs its internal
    	 * write verification only on bits that transitioned from
    	 * 1 to 0. The device does NOT verify the whole page on a
    	 * byte by byte basis. It is possible that the page was
    	 * not completely erased or the page is becoming unusable
    	 * due to wear. The read with ECC would catch the error
    	 * later when the ECC page check fails, but we would rather
    	 * catch it early in the page write stage. Better to write
    	 * no data than invalid data.
    	 */
    
    	/* Send command to read back the page */
    	if (col < nand->eccsize)
              NanD_Command(nand, NAND_CMD_READ0);
    	else
              NanD_Command(nand, NAND_CMD_READ1);
            NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col);
    
    	/* Loop through and verify the data */
    	for (i = col; i < last; i++) {
    		if (nand->data_buf[i] != readb (nand->IO_ADDR)) {
    			printf ("nand_write_ecc: " "Failed write verify, page 0x%08x ", page);
    			return -1;
    		}
    	}
    
    #ifdef CONFIG_MTD_NAND_ECC
    	/*
    	 * We also want to check that the ECC bytes wrote
    	 * correctly for the same reasons stated above.
    	 */
    	NanD_Command(nand, NAND_CMD_READOOB);
    	NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col);
    	for (i = 0; i < nand->oobsize; i++)
    		nand->data_buf[i] = readb (nand->IO_ADDR);
    	for (i = 0; i < ecc_bytes; i++) {
    		if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
    			printf ("nand_write_ecc: Failed ECC write "
    			       "verify, page 0x%08x, " "%6i bytes were succesful\n", page, i);
    			return -1;
    		}
    	}
    #endif
    #endif
    	return 0;
    }
    static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
    			   size_t * retlen, const u_char * buf, u_char * ecc_code)
    {
    	int i, page, col, cnt, ret = 0;
    
    	/* Do not allow write past end of device */
    	if ((to + len) > nand->totlen) {
    		printf ("nand_write_oob: Attempt to write past end of page\n");
    		return -1;
    	}
    
    	/* Shift to get page */
    	page = ((int) to) >> nand->page_shift;
    
    	/* Get the starting column */
    	col = to & (nand->oobblock - 1);
    
    	/* Initialize return length value */
    	*retlen = 0;
    
    	/* Select the NAND device */
          NAND_ENABLE_CE(nand);  /* set pin low */
    
    	/* Check the WP bit */
          NanD_Command(nand, NAND_CMD_STATUS);
    	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
    		printf ("nand_write_ecc: Device is write protected!!!\n");
    		ret = -1;
    		goto out;
    	}
    
    	/* Loop until all data is written */
    	while (*retlen < len) {
    		/* Invalidate cache, if we write to this page */
    		if (nand->cache_page == page)
    			nand->cache_page = -1;
    
    		/* Write data into buffer */
    		if ((col + len) >= nand->oobblock)
    			for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++)
    				nand->data_buf[i] = buf[(*retlen + cnt)];
    		else
    			for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++)
    				nand->data_buf[i] = buf[(*retlen + cnt)];
    		/* We use the same function for write and writev !) */
    		ret = nand_write_page (nand, page, col, i, ecc_code);
    		if (ret)
    			goto out;
    
    		/* Next data start at page boundary */
    		col = 0;
    
    		/* Update written bytes count */
    		*retlen += cnt;
    
    		/* Increment page address */
    		page++;
    	}
    
    	/* Return happy */
    	*retlen = len;
    
    out:
    	/* De-select the NAND device */
          NAND_DISABLE_CE(nand);  /* set pin high */
    
    	return ret;
    }
    
    #if 0 /* not used */
    /* Read a buffer from NanD */
    static void NanD_ReadBuf(struct nand_chip *nand, u_char * buf, int len)
    {
    	unsigned long nandptr;
    
    	nandptr = nand->IO_ADDR;
    
    	for (; len > 0; len--)
    		*buf++ = READ_NAND(nandptr);
    
    }
    /* Write a buffer to NanD */
    static void NanD_WriteBuf(struct nand_chip *nand, const u_char * buf, int len)
    {
    	unsigned long nandptr;
    	int i;