Skip to content
Snippets Groups Projects
dlmalloc.src 102 KiB
Newer Older
  • Learn to ignore specific revisions
  • Wolfgang Denk's avatar
    Wolfgang Denk committed
    2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
        new_brk = (char*)(MORECORE (correction));
        if (new_brk == (char*)(MORECORE_FAILURE)) return;
    
        sbrked_mem += correction;
    
        top = (mchunkptr)brk;
        top_size = new_brk - brk + correction;
        set_head(top, top_size | PREV_INUSE);
    
        if (old_top != initial_top)
        {
    
          /* There must have been an intervening foreign sbrk call. */
          /* A double fencepost is necessary to prevent consolidation */
    
          /* If not enough space to do this, then user did something very wrong */
          if (old_top_size < MINSIZE)
          {
            set_head(top, PREV_INUSE); /* will force null return from malloc */
            return;
          }
    
          /* Also keep size a multiple of MALLOC_ALIGNMENT */
          old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
          set_head_size(old_top, old_top_size);
          chunk_at_offset(old_top, old_top_size          )->size =
            SIZE_SZ|PREV_INUSE;
          chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
            SIZE_SZ|PREV_INUSE;
          /* If possible, release the rest. */
          if (old_top_size >= MINSIZE)
            fREe(chunk2mem(old_top));
        }
      }
    
      if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
        max_sbrked_mem = sbrked_mem;
      if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
        max_total_mem = mmapped_mem + sbrked_mem;
    
      /* We always land on a page boundary */
      assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
    }
    
    
    
    
    /* Main public routines */
    
    
    /*
      Malloc Algorthim:
    
        The requested size is first converted into a usable form, `nb'.
        This currently means to add 4 bytes overhead plus possibly more to
        obtain 8-byte alignment and/or to obtain a size of at least
        MINSIZE (currently 16 bytes), the smallest allocatable size.
        (All fits are considered `exact' if they are within MINSIZE bytes.)
    
        From there, the first successful of the following steps is taken:
    
          1. The bin corresponding to the request size is scanned, and if
             a chunk of exactly the right size is found, it is taken.
    
          2. The most recently remaindered chunk is used if it is big
             enough.  This is a form of (roving) first fit, used only in
             the absence of exact fits. Runs of consecutive requests use
             the remainder of the chunk used for the previous such request
             whenever possible. This limited use of a first-fit style
             allocation strategy tends to give contiguous chunks
             coextensive lifetimes, which improves locality and can reduce
             fragmentation in the long run.
    
          3. Other bins are scanned in increasing size order, using a
             chunk big enough to fulfill the request, and splitting off
             any remainder.  This search is strictly by best-fit; i.e.,
             the smallest (with ties going to approximately the least
             recently used) chunk that fits is selected.
    
          4. If large enough, the chunk bordering the end of memory
             (`top') is split off. (This use of `top' is in accord with
             the best-fit search rule.  In effect, `top' is treated as
             larger (and thus less well fitting) than any other available
             chunk since it can be extended to be as large as necessary
             (up to system limitations).
    
          5. If the request size meets the mmap threshold and the
             system supports mmap, and there are few enough currently
             allocated mmapped regions, and a call to mmap succeeds,
             the request is allocated via direct memory mapping.
    
          6. Otherwise, the top of memory is extended by
             obtaining more space from the system (normally using sbrk,
             but definable to anything else via the MORECORE macro).
             Memory is gathered from the system (in system page-sized
             units) in a way that allows chunks obtained across different
             sbrk calls to be consolidated, but does not require
             contiguous memory. Thus, it should be safe to intersperse
             mallocs with other sbrk calls.
    
    
          All allocations are made from the the `lowest' part of any found
          chunk. (The implementation invariant is that prev_inuse is
          always true of any allocated chunk; i.e., that each allocated
          chunk borders either a previously allocated and still in-use chunk,
          or the base of its memory arena.)
    
    */
    
    #if __STD_C
    Void_t* mALLOc(size_t bytes)
    #else
    Void_t* mALLOc(bytes) size_t bytes;
    #endif
    {
      mchunkptr victim;                  /* inspected/selected chunk */
      INTERNAL_SIZE_T victim_size;       /* its size */
      int       idx;                     /* index for bin traversal */
      mbinptr   bin;                     /* associated bin */
      mchunkptr remainder;               /* remainder from a split */
      long      remainder_size;          /* its size */
      int       remainder_index;         /* its bin index */
      unsigned long block;               /* block traverser bit */
      int       startidx;                /* first bin of a traversed block */
      mchunkptr fwd;                     /* misc temp for linking */
      mchunkptr bck;                     /* misc temp for linking */
      mbinptr q;                         /* misc temp */
    
      INTERNAL_SIZE_T nb;
    
      if ((long)bytes < 0) return 0;
    
      nb = request2size(bytes);  /* padded request size; */
    
      /* Check for exact match in a bin */
    
      if (is_small_request(nb))  /* Faster version for small requests */
      {
        idx = smallbin_index(nb);
    
        /* No traversal or size check necessary for small bins.  */
    
        q = bin_at(idx);
        victim = last(q);
    
        /* Also scan the next one, since it would have a remainder < MINSIZE */
        if (victim == q)
        {
          q = next_bin(q);
          victim = last(q);
        }
        if (victim != q)
        {
          victim_size = chunksize(victim);
          unlink(victim, bck, fwd);
          set_inuse_bit_at_offset(victim, victim_size);
          check_malloced_chunk(victim, nb);
          return chunk2mem(victim);
        }
    
        idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
    
      }
      else
      {
        idx = bin_index(nb);
        bin = bin_at(idx);
    
        for (victim = last(bin); victim != bin; victim = victim->bk)
        {
          victim_size = chunksize(victim);
          remainder_size = victim_size - nb;
    
          if (remainder_size >= (long)MINSIZE) /* too big */
          {
            --idx; /* adjust to rescan below after checking last remainder */
            break;
          }
    
          else if (remainder_size >= 0) /* exact fit */
          {
            unlink(victim, bck, fwd);
            set_inuse_bit_at_offset(victim, victim_size);
            check_malloced_chunk(victim, nb);
            return chunk2mem(victim);
          }
        }
    
        ++idx;
    
      }
    
      /* Try to use the last split-off remainder */
    
      if ( (victim = last_remainder->fd) != last_remainder)
      {
        victim_size = chunksize(victim);
        remainder_size = victim_size - nb;
    
        if (remainder_size >= (long)MINSIZE) /* re-split */
        {
          remainder = chunk_at_offset(victim, nb);
          set_head(victim, nb | PREV_INUSE);
          link_last_remainder(remainder);
          set_head(remainder, remainder_size | PREV_INUSE);
          set_foot(remainder, remainder_size);
          check_malloced_chunk(victim, nb);
          return chunk2mem(victim);
        }
    
        clear_last_remainder;
    
        if (remainder_size >= 0)  /* exhaust */
        {
          set_inuse_bit_at_offset(victim, victim_size);
          check_malloced_chunk(victim, nb);
          return chunk2mem(victim);
        }
    
        /* Else place in bin */
    
        frontlink(victim, victim_size, remainder_index, bck, fwd);
      }
    
      /*
         If there are any possibly nonempty big-enough blocks,
         search for best fitting chunk by scanning bins in blockwidth units.
      */
    
      if ( (block = idx2binblock(idx)) <= binblocks)
      {
    
        /* Get to the first marked block */
    
        if ( (block & binblocks) == 0)
        {
          /* force to an even block boundary */
          idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
          block <<= 1;
          while ((block & binblocks) == 0)
          {
            idx += BINBLOCKWIDTH;
            block <<= 1;
          }
        }
    
        /* For each possibly nonempty block ... */
        for (;;)
        {
          startidx = idx;          /* (track incomplete blocks) */
          q = bin = bin_at(idx);
    
          /* For each bin in this block ... */
          do
          {
            /* Find and use first big enough chunk ... */
    
            for (victim = last(bin); victim != bin; victim = victim->bk)
            {
              victim_size = chunksize(victim);
              remainder_size = victim_size - nb;
    
              if (remainder_size >= (long)MINSIZE) /* split */
              {
                remainder = chunk_at_offset(victim, nb);
                set_head(victim, nb | PREV_INUSE);
                unlink(victim, bck, fwd);
                link_last_remainder(remainder);
                set_head(remainder, remainder_size | PREV_INUSE);
                set_foot(remainder, remainder_size);
                check_malloced_chunk(victim, nb);
                return chunk2mem(victim);
              }
    
              else if (remainder_size >= 0)  /* take */
              {
                set_inuse_bit_at_offset(victim, victim_size);
                unlink(victim, bck, fwd);
                check_malloced_chunk(victim, nb);
                return chunk2mem(victim);
              }
    
            }
    
           bin = next_bin(bin);
    
          } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
    
          /* Clear out the block bit. */
    
          do   /* Possibly backtrack to try to clear a partial block */
          {
            if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
            {
              binblocks &= ~block;
              break;
            }
            --startidx;
           q = prev_bin(q);
          } while (first(q) == q);
    
          /* Get to the next possibly nonempty block */
    
          if ( (block <<= 1) <= binblocks && (block != 0) )
          {
            while ((block & binblocks) == 0)
            {
              idx += BINBLOCKWIDTH;
              block <<= 1;
            }
          }
          else
            break;
        }
      }
    
    
      /* Try to use top chunk */
    
      /* Require that there be a remainder, ensuring top always exists  */
      if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
      {
    
    #if HAVE_MMAP
        /* If big and would otherwise need to extend, try to use mmap instead */
        if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
            (victim = mmap_chunk(nb)) != 0)
          return chunk2mem(victim);
    #endif
    
        /* Try to extend */
        malloc_extend_top(nb);
        if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
          return 0; /* propagate failure */
      }
    
      victim = top;
      set_head(victim, nb | PREV_INUSE);
      top = chunk_at_offset(victim, nb);
      set_head(top, remainder_size | PREV_INUSE);
      check_malloced_chunk(victim, nb);
      return chunk2mem(victim);
    
    }
    
    
    
    
    /*
    
      free() algorithm :
    
        cases:
    
           1. free(0) has no effect.
    
           2. If the chunk was allocated via mmap, it is release via munmap().
    
           3. If a returned chunk borders the current high end of memory,
              it is consolidated into the top, and if the total unused
              topmost memory exceeds the trim threshold, malloc_trim is
              called.
    
           4. Other chunks are consolidated as they arrive, and
              placed in corresponding bins. (This includes the case of
              consolidating with the current `last_remainder').
    
    */
    
    
    #if __STD_C
    void fREe(Void_t* mem)
    #else
    void fREe(mem) Void_t* mem;
    #endif
    {
      mchunkptr p;         /* chunk corresponding to mem */
      INTERNAL_SIZE_T hd;  /* its head field */
      INTERNAL_SIZE_T sz;  /* its size */
      int       idx;       /* its bin index */
      mchunkptr next;      /* next contiguous chunk */
      INTERNAL_SIZE_T nextsz; /* its size */
      INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
      mchunkptr bck;       /* misc temp for linking */
      mchunkptr fwd;       /* misc temp for linking */
      int       islr;      /* track whether merging with last_remainder */
    
      if (mem == 0)                              /* free(0) has no effect */
        return;
    
      p = mem2chunk(mem);
      hd = p->size;
    
    #if HAVE_MMAP
      if (hd & IS_MMAPPED)                       /* release mmapped memory. */
      {
        munmap_chunk(p);
        return;
      }
    #endif
    
      check_inuse_chunk(p);
    
      sz = hd & ~PREV_INUSE;
      next = chunk_at_offset(p, sz);
      nextsz = chunksize(next);
    
      if (next == top)                            /* merge with top */
      {
        sz += nextsz;
    
        if (!(hd & PREV_INUSE))                    /* consolidate backward */
        {
          prevsz = p->prev_size;
          p = chunk_at_offset(p, -((long) prevsz));
          sz += prevsz;
          unlink(p, bck, fwd);
        }
    
        set_head(p, sz | PREV_INUSE);
        top = p;
        if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
          malloc_trim(top_pad);
        return;
      }
    
      set_head(next, nextsz);                    /* clear inuse bit */
    
      islr = 0;
    
      if (!(hd & PREV_INUSE))                    /* consolidate backward */
      {
        prevsz = p->prev_size;
        p = chunk_at_offset(p, -((long) prevsz));
        sz += prevsz;
    
        if (p->fd == last_remainder)             /* keep as last_remainder */
          islr = 1;
        else
          unlink(p, bck, fwd);
      }
    
      if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
      {
        sz += nextsz;
    
        if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
        {
          islr = 1;
          link_last_remainder(p);
        }
        else
          unlink(next, bck, fwd);
      }
    
    
      set_head(p, sz | PREV_INUSE);
      set_foot(p, sz);
      if (!islr)
        frontlink(p, sz, idx, bck, fwd);
    }
    
    
    
    
    
    /*
    
      Realloc algorithm:
    
        Chunks that were obtained via mmap cannot be extended or shrunk
        unless HAVE_MREMAP is defined, in which case mremap is used.
        Otherwise, if their reallocation is for additional space, they are
        copied.  If for less, they are just left alone.
    
        Otherwise, if the reallocation is for additional space, and the
        chunk can be extended, it is, else a malloc-copy-free sequence is
        taken.  There are several different ways that a chunk could be
        extended. All are tried:
    
           * Extending forward into following adjacent free chunk.
           * Shifting backwards, joining preceding adjacent space
           * Both shifting backwards and extending forward.
           * Extending into newly sbrked space
    
        Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
        size argument of zero (re)allocates a minimum-sized chunk.
    
        If the reallocation is for less space, and the new request is for
        a `small' (<512 bytes) size, then the newly unused space is lopped
        off and freed.
    
        The old unix realloc convention of allowing the last-free'd chunk
        to be used as an argument to realloc is no longer supported.
        I don't know of any programs still relying on this feature,
        and allowing it would also allow too many other incorrect
        usages of realloc to be sensible.
    
    
    */
    
    
    #if __STD_C
    Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
    #else
    Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
    #endif
    {
      INTERNAL_SIZE_T    nb;      /* padded request size */
    
      mchunkptr oldp;             /* chunk corresponding to oldmem */
      INTERNAL_SIZE_T    oldsize; /* its size */
    
      mchunkptr newp;             /* chunk to return */
      INTERNAL_SIZE_T    newsize; /* its size */
      Void_t*   newmem;           /* corresponding user mem */
    
      mchunkptr next;             /* next contiguous chunk after oldp */
      INTERNAL_SIZE_T  nextsize;  /* its size */
    
      mchunkptr prev;             /* previous contiguous chunk before oldp */
      INTERNAL_SIZE_T  prevsize;  /* its size */
    
      mchunkptr remainder;        /* holds split off extra space from newp */
      INTERNAL_SIZE_T  remainder_size;   /* its size */
    
      mchunkptr bck;              /* misc temp for linking */
      mchunkptr fwd;              /* misc temp for linking */
    
    #ifdef REALLOC_ZERO_BYTES_FREES
      if (bytes == 0) { fREe(oldmem); return 0; }
    #endif
    
      if ((long)bytes < 0) return 0;
    
      /* realloc of null is supposed to be same as malloc */
      if (oldmem == 0) return mALLOc(bytes);
    
      newp    = oldp    = mem2chunk(oldmem);
      newsize = oldsize = chunksize(oldp);
    
    
      nb = request2size(bytes);
    
    #if HAVE_MMAP
      if (chunk_is_mmapped(oldp))
      {
    #if HAVE_MREMAP
        newp = mremap_chunk(oldp, nb);
        if(newp) return chunk2mem(newp);
    #endif
        /* Note the extra SIZE_SZ overhead. */
        if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
        /* Must alloc, copy, free. */
        newmem = mALLOc(bytes);
        if (newmem == 0) return 0; /* propagate failure */
        MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
        munmap_chunk(oldp);
        return newmem;
      }
    #endif
    
      check_inuse_chunk(oldp);
    
      if ((long)(oldsize) < (long)(nb))
      {
    
        /* Try expanding forward */
    
        next = chunk_at_offset(oldp, oldsize);
        if (next == top || !inuse(next))
        {
          nextsize = chunksize(next);
    
          /* Forward into top only if a remainder */
          if (next == top)
          {
            if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
            {
              newsize += nextsize;
              top = chunk_at_offset(oldp, nb);
              set_head(top, (newsize - nb) | PREV_INUSE);
              set_head_size(oldp, nb);
              return chunk2mem(oldp);
            }
          }
    
          /* Forward into next chunk */
          else if (((long)(nextsize + newsize) >= (long)(nb)))
          {
            unlink(next, bck, fwd);
            newsize  += nextsize;
            goto split;
          }
        }
        else
        {
          next = 0;
          nextsize = 0;
        }
    
        /* Try shifting backwards. */
    
        if (!prev_inuse(oldp))
        {
          prev = prev_chunk(oldp);
          prevsize = chunksize(prev);
    
          /* try forward + backward first to save a later consolidation */
    
          if (next != 0)
          {
            /* into top */
            if (next == top)
            {
              if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
              {
                unlink(prev, bck, fwd);
                newp = prev;
                newsize += prevsize + nextsize;
                newmem = chunk2mem(newp);
                MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
                top = chunk_at_offset(newp, nb);
                set_head(top, (newsize - nb) | PREV_INUSE);
                set_head_size(newp, nb);
                return newmem;
              }
            }
    
            /* into next chunk */
            else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
            {
              unlink(next, bck, fwd);
              unlink(prev, bck, fwd);
              newp = prev;
              newsize += nextsize + prevsize;
              newmem = chunk2mem(newp);
              MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
              goto split;
            }
          }
    
          /* backward only */
          if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
          {
            unlink(prev, bck, fwd);
            newp = prev;
            newsize += prevsize;
            newmem = chunk2mem(newp);
            MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
            goto split;
          }
        }
    
        /* Must allocate */
    
        newmem = mALLOc (bytes);
    
        if (newmem == 0)  /* propagate failure */
          return 0;
    
        /* Avoid copy if newp is next chunk after oldp. */
        /* (This can only happen when new chunk is sbrk'ed.) */
    
        if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
        {
          newsize += chunksize(newp);
          newp = oldp;
          goto split;
        }
    
        /* Otherwise copy, free, and exit */
        MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
        fREe(oldmem);
        return newmem;
      }
    
    
     split:  /* split off extra room in old or expanded chunk */
    
      if (newsize - nb >= MINSIZE) /* split off remainder */
      {
        remainder = chunk_at_offset(newp, nb);
        remainder_size = newsize - nb;
        set_head_size(newp, nb);
        set_head(remainder, remainder_size | PREV_INUSE);
        set_inuse_bit_at_offset(remainder, remainder_size);
        fREe(chunk2mem(remainder)); /* let free() deal with it */
      }
      else
      {
        set_head_size(newp, newsize);
        set_inuse_bit_at_offset(newp, newsize);
      }
    
      check_inuse_chunk(newp);
      return chunk2mem(newp);
    }
    
    
    
    
    /*
    
      memalign algorithm:
    
        memalign requests more than enough space from malloc, finds a spot
        within that chunk that meets the alignment request, and then
        possibly frees the leading and trailing space.
    
        The alignment argument must be a power of two. This property is not
        checked by memalign, so misuse may result in random runtime errors.
    
        8-byte alignment is guaranteed by normal malloc calls, so don't
        bother calling memalign with an argument of 8 or less.
    
        Overreliance on memalign is a sure way to fragment space.
    
    */
    
    
    #if __STD_C
    Void_t* mEMALIGn(size_t alignment, size_t bytes)
    #else
    Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
    #endif
    {
      INTERNAL_SIZE_T    nb;      /* padded  request size */
      char*     m;                /* memory returned by malloc call */
      mchunkptr p;                /* corresponding chunk */
      char*     brk;              /* alignment point within p */
      mchunkptr newp;             /* chunk to return */
      INTERNAL_SIZE_T  newsize;   /* its size */
      INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
      mchunkptr remainder;        /* spare room at end to split off */
      long      remainder_size;   /* its size */
    
      if ((long)bytes < 0) return 0;
    
      /* If need less alignment than we give anyway, just relay to malloc */
    
      if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
    
      /* Otherwise, ensure that it is at least a minimum chunk size */
    
      if (alignment <  MINSIZE) alignment = MINSIZE;
    
      /* Call malloc with worst case padding to hit alignment. */
    
      nb = request2size(bytes);
      m  = (char*)(mALLOc(nb + alignment + MINSIZE));
    
      if (m == 0) return 0; /* propagate failure */
    
      p = mem2chunk(m);
    
      if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
      {
    #if HAVE_MMAP
        if(chunk_is_mmapped(p))
          return chunk2mem(p); /* nothing more to do */
    #endif
      }
      else /* misaligned */
      {
        /*
          Find an aligned spot inside chunk.
          Since we need to give back leading space in a chunk of at
          least MINSIZE, if the first calculation places us at
          a spot with less than MINSIZE leader, we can move to the
          next aligned spot -- we've allocated enough total room so that
          this is always possible.
        */
    
        brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
        if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
    
        newp = (mchunkptr)brk;
        leadsize = brk - (char*)(p);
        newsize = chunksize(p) - leadsize;
    
    #if HAVE_MMAP
        if(chunk_is_mmapped(p))
        {
          newp->prev_size = p->prev_size + leadsize;
          set_head(newp, newsize|IS_MMAPPED);
          return chunk2mem(newp);
        }
    #endif
    
        /* give back leader, use the rest */
    
        set_head(newp, newsize | PREV_INUSE);
        set_inuse_bit_at_offset(newp, newsize);
        set_head_size(p, leadsize);
        fREe(chunk2mem(p));
        p = newp;
    
        assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
      }
    
      /* Also give back spare room at the end */
    
      remainder_size = chunksize(p) - nb;
    
      if (remainder_size >= (long)MINSIZE)
      {
        remainder = chunk_at_offset(p, nb);
        set_head(remainder, remainder_size | PREV_INUSE);
        set_head_size(p, nb);
        fREe(chunk2mem(remainder));
      }
    
      check_inuse_chunk(p);
      return chunk2mem(p);
    
    }
    
    
    
    
    /*
        valloc just invokes memalign with alignment argument equal
        to the page size of the system (or as near to this as can
        be figured out from all the includes/defines above.)
    */
    
    #if __STD_C
    Void_t* vALLOc(size_t bytes)
    #else
    Void_t* vALLOc(bytes) size_t bytes;
    #endif
    {
      return mEMALIGn (malloc_getpagesize, bytes);
    }
    
    /*
      pvalloc just invokes valloc for the nearest pagesize
      that will accommodate request
    */
    
    
    #if __STD_C
    Void_t* pvALLOc(size_t bytes)
    #else
    Void_t* pvALLOc(bytes) size_t bytes;
    #endif
    {
      size_t pagesize = malloc_getpagesize;
      return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
    }
    
    /*
    
      calloc calls malloc, then zeroes out the allocated chunk.
    
    */
    
    #if __STD_C
    Void_t* cALLOc(size_t n, size_t elem_size)
    #else
    Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
    #endif
    {
      mchunkptr p;
      INTERNAL_SIZE_T csz;
    
      INTERNAL_SIZE_T sz = n * elem_size;
    
    
      /* check if expand_top called, in which case don't need to clear */
    #if MORECORE_CLEARS
      mchunkptr oldtop = top;
      INTERNAL_SIZE_T oldtopsize = chunksize(top);
    #endif
      Void_t* mem = mALLOc (sz);
    
      if ((long)n < 0) return 0;
    
      if (mem == 0)
        return 0;
      else
      {
        p = mem2chunk(mem);
    
        /* Two optional cases in which clearing not necessary */
    
    
    #if HAVE_MMAP
        if (chunk_is_mmapped(p)) return mem;
    #endif
    
        csz = chunksize(p);
    
    #if MORECORE_CLEARS
        if (p == oldtop && csz > oldtopsize)
        {
          /* clear only the bytes from non-freshly-sbrked memory */
          csz = oldtopsize;
        }
    #endif
    
        MALLOC_ZERO(mem, csz - SIZE_SZ);
        return mem;
      }
    }
    
    /*
    
      cfree just calls free. It is needed/defined on some systems
      that pair it with calloc, presumably for odd historical reasons.
    
    */
    
    #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
    #if __STD_C
    void cfree(Void_t *mem)
    #else
    void cfree(mem) Void_t *mem;
    #endif
    {
      fREe(mem);
    }
    #endif
    
    
    
    /*
    
        Malloc_trim gives memory back to the system (via negative
        arguments to sbrk) if there is unused memory at the `high' end of
        the malloc pool. You can call this after freeing large blocks of
        memory to potentially reduce the system-level memory requirements
        of a program. However, it cannot guarantee to reduce memory. Under
        some allocation patterns, some large free blocks of memory will be
        locked between two used chunks, so they cannot be given back to
        the system.
    
        The `pad' argument to malloc_trim represents the amount of free
        trailing space to leave untrimmed. If this argument is zero,
        only the minimum amount of memory to maintain internal data
        structures will be left (one page or less). Non-zero arguments
        can be supplied to maintain enough trailing space to service
        future expected allocations without having to re-obtain memory
        from the system.
    
        Malloc_trim returns 1 if it actually released any memory, else 0.
    
    */
    
    #if __STD_C
    int malloc_trim(size_t pad)
    #else
    int malloc_trim(pad) size_t pad;
    #endif
    {
      long  top_size;        /* Amount of top-most memory */
      long  extra;           /* Amount to release */
      char* current_brk;     /* address returned by pre-check sbrk call */
      char* new_brk;         /* address returned by negative sbrk call */
    
      unsigned long pagesz = malloc_getpagesize;
    
      top_size = chunksize(top);
      extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
    
      if (extra < (long)pagesz)  /* Not enough memory to release */
        return 0;
    
      else
      {
        /* Test to make sure no one else called sbrk */
        current_brk = (char*)(MORECORE (0));
        if (current_brk != (char*)(top) + top_size)
          return 0;     /* Apparently we don't own memory; must fail */
    
        else
        {
          new_brk = (char*)(MORECORE (-extra));
    
          if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
          {
            /* Try to figure out what we have */
            current_brk = (char*)(MORECORE (0));
            top_size = current_brk - (char*)top;
            if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
            {
              sbrked_mem = current_brk - sbrk_base;
              set_head(top, top_size | PREV_INUSE);
            }
            check_chunk(top);
            return 0;
          }
    
          else
          {
            /* Success. Adjust top accordingly. */
            set_head(top, (top_size - extra) | PREV_INUSE);
            sbrked_mem -= extra;
            check_chunk(top);