Skip to content
Snippets Groups Projects
docecc.c 14.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • Wolfgang Denk's avatar
    Wolfgang Denk committed
    /*
     * ECC algorithm for M-systems disk on chip. We use the excellent Reed
     * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
     * GNU GPL License. The rest is simply to convert the disk on chip
     * syndrom into a standard syndom.
     *
     * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
     * Copyright (C) 2000 Netgem S.A.
     *
     * $Id: docecc.c,v 1.4 2001/10/02 15:05:13 dwmw2 Exp $
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
     */
    
    #include <config.h>
    #include <common.h>
    #include <malloc.h>
    
    #undef ECC_DEBUG
    #undef PSYCHO_DEBUG
    
    #if (CONFIG_COMMANDS & CFG_CMD_DOC)
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    #include <linux/mtd/doc2000.h>
    
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    /* need to undef it (from asm/termbits.h) */
    #undef B0
    
    #define MM 10 /* Symbol size in bits */
    #define KK (1023-4) /* Number of data symbols per block */
    #define B0 510 /* First root of generator polynomial, alpha form */
    #define PRIM 1 /* power of alpha used to generate roots of generator poly */
    #define	NN ((1 << MM) - 1)
    
    typedef unsigned short dtype;
    
    /* 1+x^3+x^10 */
    static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
    
    /* This defines the type used to store an element of the Galois Field
     * used by the code. Make sure this is something larger than a char if
     * if anything larger than GF(256) is used.
     *
     * Note: unsigned char will work up to GF(256) but int seems to run
     * faster on the Pentium.
     */
    typedef int gf;
    
    /* No legal value in index form represents zero, so
     * we need a special value for this purpose
     */
    #define A0	(NN)
    
    /* Compute x % NN, where NN is 2**MM - 1,
     * without a slow divide
     */
    static inline gf
    modnn(int x)
    {
      while (x >= NN) {
        x -= NN;
        x = (x >> MM) + (x & NN);
      }
      return x;
    }
    
    #define	CLEAR(a,n) {\
    int ci;\
    for(ci=(n)-1;ci >=0;ci--)\
    (a)[ci] = 0;\
    }
    
    #define	COPY(a,b,n) {\
    int ci;\
    for(ci=(n)-1;ci >=0;ci--)\
    (a)[ci] = (b)[ci];\
    }
    
    #define	COPYDOWN(a,b,n) {\
    int ci;\
    for(ci=(n)-1;ci >=0;ci--)\
    (a)[ci] = (b)[ci];\
    }
    
    #define Ldec 1
    
    /* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
       lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i;
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    		   polynomial form -> index form  index_of[j=alpha**i] = i
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
       alpha=2 is the primitive element of GF(2**m)
       HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	Let @ represent the primitive element commonly called "alpha" that
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
       is the root of the primitive polynomial p(x). Then in GF(2^m), for any
       0 <= i <= 2^m-2,
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	@^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
       where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
       of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
       example the polynomial representation of @^5 would be given by the binary
       representation of the integer "alpha_to[5]".
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    		   Similarily, index_of[] can be used as follows:
    	As above, let @ represent the primitive element of GF(2^m) that is
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
       the root of the primitive polynomial p(x). In order to find the power
       of @ (alpha) that has the polynomial representation
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
       we consider the integer "i" whose binary representation with a(0) being LSB
       and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
       "index_of[i]". Now, @^index_of[i] is that element whose polynomial
        representation is (a(0),a(1),a(2),...,a(m-1)).
       NOTE:
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	The element alpha_to[2^m-1] = 0 always signifying that the
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
       representation of "@^infinity" = 0 is (0,0,0,...,0).
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	Similarily, the element index_of[0] = A0 always signifying
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
       that the power of alpha which has the polynomial representation
       (0,0,...,0) is "infinity".
    
    */
    
    static void
    generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1])
    {
      register int i, mask;
    
      mask = 1;
      Alpha_to[MM] = 0;
      for (i = 0; i < MM; i++) {
        Alpha_to[i] = mask;
        Index_of[Alpha_to[i]] = i;
        /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
        if (Pp[i] != 0)
          Alpha_to[MM] ^= mask;	/* Bit-wise EXOR operation */
        mask <<= 1;	/* single left-shift */
      }
      Index_of[Alpha_to[MM]] = MM;
      /*
       * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
       * poly-repr of @^i shifted left one-bit and accounting for any @^MM
       * term that may occur when poly-repr of @^i is shifted.
       */
      mask >>= 1;
      for (i = MM + 1; i < NN; i++) {
        if (Alpha_to[i - 1] >= mask)
          Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
        else
          Alpha_to[i] = Alpha_to[i - 1] << 1;
        Index_of[Alpha_to[i]] = i;
      }
      Index_of[0] = A0;
      Alpha_to[NN] = 0;
    }
    
    /*
     * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
     * of the feedback shift register after having processed the data and
     * the ECC.
     *
     * Return number of symbols corrected, or -1 if codeword is illegal
     * or uncorrectable. If eras_pos is non-null, the detected error locations
     * are written back. NOTE! This array must be at least NN-KK elements long.
     * The corrected data are written in eras_val[]. They must be xor with the data
     * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
     *
     * First "no_eras" erasures are declared by the calling program. Then, the
     * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
     * If the number of channel errors is not greater than "t_after_eras" the
     * transmitted codeword will be recovered. Details of algorithm can be found
     * in R. Blahut's "Theory ... of Error-Correcting Codes".
    
     * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
     * will result. The decoder *could* check for this condition, but it would involve
     * extra time on every decoding operation.
     * */
    static int
    eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	    gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK],
    	    int no_eras)
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    {
      int deg_lambda, el, deg_omega;
      int i, j, r,k;
      gf u,q,tmp,num1,num2,den,discr_r;
      gf lambda[NN-KK + 1], s[NN-KK + 1];	/* Err+Eras Locator poly
    					 * and syndrome poly */
      gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
      gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
      int syn_error, count;
    
      syn_error = 0;
      for(i=0;i<NN-KK;i++)
          syn_error |= bb[i];
    
      if (!syn_error) {
        /* if remainder is zero, data[] is a codeword and there are no
         * errors to correct. So return data[] unmodified
         */
        count = 0;
        goto finish;
      }
    
      for(i=1;i<=NN-KK;i++){
        s[i] = bb[0];
      }
      for(j=1;j<NN-KK;j++){
        if(bb[j] == 0)
          continue;
        tmp = Index_of[bb[j]];
    
        for(i=1;i<=NN-KK;i++)
          s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
      }
    
      /* undo the feedback register implicit multiplication and convert
         syndromes to index form */
    
      for(i=1;i<=NN-KK;i++) {
          tmp = Index_of[s[i]];
          if (tmp != A0)
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	  tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
          s[i] = tmp;
      }
    
      CLEAR(&lambda[1],NN-KK);
      lambda[0] = 1;
    
      if (no_eras > 0) {
        /* Init lambda to be the erasure locator polynomial */
        lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];
        for (i = 1; i < no_eras; i++) {
          u = modnn(PRIM*eras_pos[i]);
          for (j = i+1; j > 0; j--) {
    	tmp = Index_of[lambda[j - 1]];
    	if(tmp != A0)
    	  lambda[j] ^= Alpha_to[modnn(u + tmp)];
          }
        }
    #ifdef ECC_DEBUG
        /* Test code that verifies the erasure locator polynomial just constructed
           Needed only for decoder debugging. */
    
        /* find roots of the erasure location polynomial */
        for(i=1;i<=no_eras;i++)
          reg[i] = Index_of[lambda[i]];
        count = 0;
        for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
          q = 1;
          for (j = 1; j <= no_eras; j++)
    	if (reg[j] != A0) {
    	  reg[j] = modnn(reg[j] + j);
    	  q ^= Alpha_to[reg[j]];
    	}
          if (q != 0)
    	continue;
          /* store root and error location number indices */
          root[count] = i;
          loc[count] = k;
          count++;
        }
        if (count != no_eras) {
          printf("\n lambda(x) is WRONG\n");
          count = -1;
          goto finish;
        }
    #ifdef PSYCHO_DEBUG
        printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
        for (i = 0; i < count; i++)
          printf("%d ", loc[i]);
        printf("\n");
    #endif
    #endif
      }
      for(i=0;i<NN-KK+1;i++)
        b[i] = Index_of[lambda[i]];
    
      /*
       * Begin Berlekamp-Massey algorithm to determine error+erasure
       * locator polynomial
       */
      r = no_eras;
      el = no_eras;
      while (++r <= NN-KK) {	/* r is the step number */
        /* Compute discrepancy at the r-th step in poly-form */
        discr_r = 0;
        for (i = 0; i < r; i++){
          if ((lambda[i] != 0) && (s[r - i] != A0)) {
    	discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
          }
        }
        discr_r = Index_of[discr_r];	/* Index form */
        if (discr_r == A0) {
          /* 2 lines below: B(x) <-- x*B(x) */
          COPYDOWN(&b[1],b,NN-KK);
          b[0] = A0;
        } else {
          /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
          t[0] = lambda[0];
          for (i = 0 ; i < NN-KK; i++) {
    	if(b[i] != A0)
    	  t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
    	else
    	  t[i+1] = lambda[i+1];
          }
          if (2 * el <= r + no_eras - 1) {
    	el = r + no_eras - el;
    	/*
    	 * 2 lines below: B(x) <-- inv(discr_r) *
    	 * lambda(x)
    	 */
    	for (i = 0; i <= NN-KK; i++)
    	  b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
          } else {
    	/* 2 lines below: B(x) <-- x*B(x) */
    	COPYDOWN(&b[1],b,NN-KK);
    	b[0] = A0;
          }
          COPY(lambda,t,NN-KK+1);
        }
      }
    
      /* Convert lambda to index form and compute deg(lambda(x)) */
      deg_lambda = 0;
      for(i=0;i<NN-KK+1;i++){
        lambda[i] = Index_of[lambda[i]];
        if(lambda[i] != A0)
          deg_lambda = i;
      }
      /*
       * Find roots of the error+erasure locator polynomial by Chien
       * Search
       */
      COPY(&reg[1],&lambda[1],NN-KK);
      count = 0;		/* Number of roots of lambda(x) */
      for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
        q = 1;
        for (j = deg_lambda; j > 0; j--){
          if (reg[j] != A0) {
    	reg[j] = modnn(reg[j] + j);
    	q ^= Alpha_to[reg[j]];
          }
        }
        if (q != 0)
          continue;
        /* store root (index-form) and error location number */
        root[count] = i;
        loc[count] = k;
        /* If we've already found max possible roots,
         * abort the search to save time
         */
        if(++count == deg_lambda)
          break;
      }
      if (deg_lambda != count) {
        /*
         * deg(lambda) unequal to number of roots => uncorrectable
         * error detected
         */
        count = -1;
        goto finish;
      }
      /*
       * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
       * x**(NN-KK)). in index form. Also find deg(omega).
       */
      deg_omega = 0;
      for (i = 0; i < NN-KK;i++){
        tmp = 0;
        j = (deg_lambda < i) ? deg_lambda : i;
        for(;j >= 0; j--){
          if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
    	tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
        }
        if(tmp != 0)
          deg_omega = i;
        omega[i] = Index_of[tmp];
      }
      omega[NN-KK] = A0;
    
      /*
       * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
       * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
       */
      for (j = count-1; j >=0; j--) {
        num1 = 0;
        for (i = deg_omega; i >= 0; i--) {
          if (omega[i] != A0)
    	num1  ^= Alpha_to[modnn(omega[i] + i * root[j])];
        }
        num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
        den = 0;
    
        /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
        for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
          if(lambda[i+1] != A0)
    	den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
        }
        if (den == 0) {
    #ifdef ECC_DEBUG
          printf("\n ERROR: denominator = 0\n");
    #endif
          /* Convert to dual- basis */
          count = -1;
          goto finish;
        }
        /* Apply error to data */
        if (num1 != 0) {
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
        } else {
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	eras_val[j] = 0;
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
        }
      }
     finish:
      for(i=0;i<count;i++)
          eras_pos[i] = loc[i];
      return count;
    }
    
    /***************************************************************************/
    /* The DOC specific code begins here */
    
    #define SECTOR_SIZE 512
    /* The sector bytes are packed into NB_DATA MM bits words */
    #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
    
    /*
     * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
     * content of the feedback shift register applyied to the sector and
     * the ECC. Return the number of errors corrected (and correct them in
     * sector), or -1 if error
     */
    int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6])
    {
        int parity, i, nb_errors;
        gf bb[NN - KK + 1];
        gf error_val[NN-KK];
        int error_pos[NN-KK], pos, bitpos, index, val;
        dtype *Alpha_to, *Index_of;
    
        /* init log and exp tables here to save memory. However, it is slower */
        Alpha_to = malloc((NN + 1) * sizeof(dtype));
        if (!Alpha_to)
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	return -1;
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
        Index_of = malloc((NN + 1) * sizeof(dtype));
        if (!Index_of) {
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	free(Alpha_to);
    	return -1;
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
        }
    
        generate_gf(Alpha_to, Index_of);
    
        parity = ecc1[1];
    
        bb[0] =  (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);
        bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);
        bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);
        bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);
    
        nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    			    error_val, error_pos, 0);
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
        if (nb_errors <= 0)
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	goto the_end;
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
        /* correct the errors */
        for(i=0;i<nb_errors;i++) {
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	pos = error_pos[i];
    	if (pos >= NB_DATA && pos < KK) {
    	    nb_errors = -1;
    	    goto the_end;
    	}
    	if (pos < NB_DATA) {
    	    /* extract bit position (MSB first) */
    	    pos = 10 * (NB_DATA - 1 - pos) - 6;
    	    /* now correct the following 10 bits. At most two bytes
    	       can be modified since pos is even */
    	    index = (pos >> 3) ^ 1;
    	    bitpos = pos & 7;
    	    if ((index >= 0 && index < SECTOR_SIZE) ||
    		index == (SECTOR_SIZE + 1)) {
    		val = error_val[i] >> (2 + bitpos);
    		parity ^= val;
    		if (index < SECTOR_SIZE)
    		    sector[index] ^= val;
    	    }
    	    index = ((pos >> 3) + 1) ^ 1;
    	    bitpos = (bitpos + 10) & 7;
    	    if (bitpos == 0)
    		bitpos = 8;
    	    if ((index >= 0 && index < SECTOR_SIZE) ||
    		index == (SECTOR_SIZE + 1)) {
    		val = error_val[i] << (8 - bitpos);
    		parity ^= val;
    		if (index < SECTOR_SIZE)
    		    sector[index] ^= val;
    	    }
    	}
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
        }
    
        /* use parity to test extra errors */
        if ((parity & 0xff) != 0)
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    	nb_errors = -1;
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
     the_end:
        free(Alpha_to);
        free(Index_of);
        return nb_errors;
    }
    
    #endif /* (CONFIG_COMMANDS & CFG_CMD_DOC) */