Skip to content
Snippets Groups Projects
fm.c 11.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright 2009-2011 Freescale Semiconductor, Inc.
     *	Dave Liu <daveliu@freescale.com>
     *
    
     * SPDX-License-Identifier:	GPL-2.0+
    
     */
    #include <common.h>
    #include <malloc.h>
    #include <asm/io.h>
    #include <asm/errno.h>
    
    #include "fm.h"
    #include "../../qe/qe.h"		/* For struct qe_firmware */
    
    
    #ifdef CONFIG_SYS_QE_FMAN_FW_IN_NAND
    
    #include <nand.h>
    #elif defined(CONFIG_SYS_QE_FW_IN_SPIFLASH)
    #include <spi_flash.h>
    
    #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_MMC)
    
    #include <mmc.h>
    #endif
    
    struct fm_muram muram[CONFIG_SYS_NUM_FMAN];
    
    u32 fm_muram_base(int fm_idx)
    {
    	return muram[fm_idx].base;
    }
    
    u32 fm_muram_alloc(int fm_idx, u32 size, u32 align)
    {
    	u32 ret;
    	u32 align_mask, off;
    	u32 save;
    
    	align_mask = align - 1;
    	save = muram[fm_idx].alloc;
    
    	off = save & align_mask;
    	if (off != 0)
    		muram[fm_idx].alloc += (align - off);
    	off = size & align_mask;
    	if (off != 0)
    		size += (align - off);
    	if ((muram[fm_idx].alloc + size) >= muram[fm_idx].top) {
    		muram[fm_idx].alloc = save;
    		printf("%s: run out of ram.\n", __func__);
    	}
    
    	ret = muram[fm_idx].alloc;
    	muram[fm_idx].alloc += size;
    	memset((void *)ret, 0, size);
    
    	return ret;
    }
    
    static void fm_init_muram(int fm_idx, void *reg)
    {
    	u32 base = (u32)reg;
    
    	muram[fm_idx].base = base;
    	muram[fm_idx].size = CONFIG_SYS_FM_MURAM_SIZE;
    	muram[fm_idx].alloc = base + FM_MURAM_RES_SIZE;
    	muram[fm_idx].top = base + CONFIG_SYS_FM_MURAM_SIZE;
    }
    
    /*
     * fm_upload_ucode - Fman microcode upload worker function
     *
     * This function does the actual uploading of an Fman microcode
     * to an Fman.
     */
    static void fm_upload_ucode(int fm_idx, struct fm_imem *imem,
    			    u32 *ucode, unsigned int size)
    {
    	unsigned int i;
    	unsigned int timeout = 1000000;
    
    	/* enable address auto increase */
    	out_be32(&imem->iadd, IRAM_IADD_AIE);
    	/* write microcode to IRAM */
    	for (i = 0; i < size / 4; i++)
    		out_be32(&imem->idata, ucode[i]);
    
    	/* verify if the writing is over */
    	out_be32(&imem->iadd, 0);
    	while ((in_be32(&imem->idata) != ucode[0]) && --timeout)
    		;
    	if (!timeout)
    		printf("Fman%u: microcode upload timeout\n", fm_idx + 1);
    
    	/* enable microcode from IRAM */
    	out_be32(&imem->iready, IRAM_READY);
    }
    
    /*
     * Upload an Fman firmware
     *
     * This function is similar to qe_upload_firmware(), exception that it uploads
     * a microcode to the Fman instead of the QE.
     *
     * Because the process for uploading a microcode to the Fman is similar for
     * that of the QE, the QE firmware binary format is used for Fman microcode.
     * It should be possible to unify these two functions, but for now we keep them
     * separate.
     */
    static int fman_upload_firmware(int fm_idx,
    				struct fm_imem *fm_imem,
    				const struct qe_firmware *firmware)
    {
    	unsigned int i;
    	u32 crc;
    	size_t calc_size = sizeof(struct qe_firmware);
    	size_t length;
    	const struct qe_header *hdr;
    
    	if (!firmware) {
    		printf("Fman%u: Invalid address for firmware\n", fm_idx + 1);
    		return -EINVAL;
    	}
    
    	hdr = &firmware->header;
    	length = be32_to_cpu(hdr->length);
    
    	/* Check the magic */
    	if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
    		(hdr->magic[2] != 'F')) {
    		printf("Fman%u: Data at %p is not a firmware\n", fm_idx + 1,
    		       firmware);
    		return -EPERM;
    	}
    
    	/* Check the version */
    	if (hdr->version != 1) {
    		printf("Fman%u: Unsupported firmware version %u\n", fm_idx + 1,
    		       hdr->version);
    		return -EPERM;
    	}
    
    	/* Validate some of the fields */
    	if ((firmware->count != 1)) {
    		printf("Fman%u: Invalid data in firmware header\n", fm_idx + 1);
    		return -EINVAL;
    	}
    
    	/* Validate the length and check if there's a CRC */
    	calc_size += (firmware->count - 1) * sizeof(struct qe_microcode);
    
    	for (i = 0; i < firmware->count; i++)
    		/*
    		 * For situations where the second RISC uses the same microcode
    		 * as the first, the 'code_offset' and 'count' fields will be
    		 * zero, so it's okay to add those.
    		 */
    		calc_size += sizeof(u32) *
    			be32_to_cpu(firmware->microcode[i].count);
    
    	/* Validate the length */
    	if (length != calc_size + sizeof(u32)) {
    		printf("Fman%u: Invalid length in firmware header\n",
    		       fm_idx + 1);
    		return -EPERM;
    	}
    
    	/*
    	 * Validate the CRC.  We would normally call crc32_no_comp(), but that
    	 * function isn't available unless you turn on JFFS support.
    	 */
    	crc = be32_to_cpu(*(u32 *)((void *)firmware + calc_size));
    	if (crc != (crc32(-1, (const void *)firmware, calc_size) ^ -1)) {
    		printf("Fman%u: Firmware CRC is invalid\n", fm_idx + 1);
    		return -EIO;
    	}
    
    	/* Loop through each microcode. */
    	for (i = 0; i < firmware->count; i++) {
    		const struct qe_microcode *ucode = &firmware->microcode[i];
    
    		/* Upload a microcode if it's present */
    		if (ucode->code_offset) {
    			u32 ucode_size;
    			u32 *code;
    			printf("Fman%u: Uploading microcode version %u.%u.%u\n",
    			       fm_idx + 1, ucode->major, ucode->minor,
    			       ucode->revision);
    			code = (void *)firmware + ucode->code_offset;
    			ucode_size = sizeof(u32) * ucode->count;
    			fm_upload_ucode(fm_idx, fm_imem, code, ucode_size);
    		}
    	}
    
    	return 0;
    }
    
    static u32 fm_assign_risc(int port_id)
    {
    	u32 risc_sel, val;
    	risc_sel = (port_id & 0x1) ? FMFPPRC_RISC2 : FMFPPRC_RISC1;
    	val = (port_id << FMFPPRC_PORTID_SHIFT) & FMFPPRC_PORTID_MASK;
    	val |= ((risc_sel << FMFPPRC_ORA_SHIFT) | risc_sel);
    
    	return val;
    }
    
    static void fm_init_fpm(struct fm_fpm *fpm)
    {
    	int i, port_id;
    	u32 val;
    
    	setbits_be32(&fpm->fmfpee, FMFPEE_EHM | FMFPEE_UEC |
    				   FMFPEE_CER | FMFPEE_DER);
    
    	/* IM mode, each even port ID to RISC#1, each odd port ID to RISC#2 */
    
    	/* offline/parser port */
    	for (i = 0; i < MAX_NUM_OH_PORT; i++) {
    		port_id = OH_PORT_ID_BASE + i;
    		val = fm_assign_risc(port_id);
    		out_be32(&fpm->fpmprc, val);
    	}
    	/* Rx 1G port */
    	for (i = 0; i < MAX_NUM_RX_PORT_1G; i++) {
    		port_id = RX_PORT_1G_BASE + i;
    		val = fm_assign_risc(port_id);
    		out_be32(&fpm->fpmprc, val);
    	}
    	/* Tx 1G port */
    	for (i = 0; i < MAX_NUM_TX_PORT_1G; i++) {
    		port_id = TX_PORT_1G_BASE + i;
    		val = fm_assign_risc(port_id);
    		out_be32(&fpm->fpmprc, val);
    	}
    	/* Rx 10G port */
    	port_id = RX_PORT_10G_BASE;
    	val = fm_assign_risc(port_id);
    	out_be32(&fpm->fpmprc, val);
    	/* Tx 10G port */
    	port_id = TX_PORT_10G_BASE;
    	val = fm_assign_risc(port_id);
    	out_be32(&fpm->fpmprc, val);
    
    	/* disable the dispatch limit in IM case */
    	out_be32(&fpm->fpmflc, FMFP_FLC_DISP_LIM_NONE);
    	/* clear events */
    	out_be32(&fpm->fmfpee, FMFPEE_CLEAR_EVENT);
    
    	/* clear risc events */
    	for (i = 0; i < 4; i++)
    		out_be32(&fpm->fpmcev[i], 0xffffffff);
    
    	/* clear error */
    	out_be32(&fpm->fpmrcr, FMFP_RCR_MDEC | FMFP_RCR_IDEC);
    }
    
    static int fm_init_bmi(int fm_idx, struct fm_bmi_common *bmi)
    {
    	int blk, i, port_id;
    	u32 val, offset, base;
    
    	/* alloc free buffer pool in MURAM */
    	base = fm_muram_alloc(fm_idx, FM_FREE_POOL_SIZE, FM_FREE_POOL_ALIGN);
    	if (!base) {
    		printf("%s: no muram for free buffer pool\n", __func__);
    		return -ENOMEM;
    	}
    	offset = base - fm_muram_base(fm_idx);
    
    	/* Need 128KB total free buffer pool size */
    	val = offset / 256;
    	blk = FM_FREE_POOL_SIZE / 256;
    	/* in IM, we must not begin from offset 0 in MURAM */
    	val |= ((blk - 1) << FMBM_CFG1_FBPS_SHIFT);
    	out_be32(&bmi->fmbm_cfg1, val);
    
    	/* disable all BMI interrupt */
    	out_be32(&bmi->fmbm_ier, FMBM_IER_DISABLE_ALL);
    
    	/* clear all events */
    	out_be32(&bmi->fmbm_ievr, FMBM_IEVR_CLEAR_ALL);
    
    	/*
    	 * set port parameters - FMBM_PP_x
    	 * max tasks 10G Rx/Tx=12, 1G Rx/Tx 4, others is 1
    	 * max dma 10G Rx/Tx=3, others is 1
    	 * set port FIFO size - FMBM_PFS_x
    	 * 4KB for all Rx and Tx ports
    	 */
    	/* offline/parser port */
    	for (i = 0; i < MAX_NUM_OH_PORT; i++) {
    		port_id = OH_PORT_ID_BASE + i - 1;
    		/* max tasks=1, max dma=1, no extra */
    		out_be32(&bmi->fmbm_pp[port_id], 0);
    		/* port FIFO size - 256 bytes, no extra */
    		out_be32(&bmi->fmbm_pfs[port_id], 0);
    	}
    	/* Rx 1G port */
    	for (i = 0; i < MAX_NUM_RX_PORT_1G; i++) {
    		port_id = RX_PORT_1G_BASE + i - 1;
    		/* max tasks=4, max dma=1, no extra */
    		out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(4));
    		/* FIFO size - 4KB, no extra */
    		out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
    	}
    	/* Tx 1G port FIFO size - 4KB, no extra */
    	for (i = 0; i < MAX_NUM_TX_PORT_1G; i++) {
    		port_id = TX_PORT_1G_BASE + i - 1;
    		/* max tasks=4, max dma=1, no extra */
    		out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(4));
    		/* FIFO size - 4KB, no extra */
    		out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
    	}
    	/* Rx 10G port */
    	port_id = RX_PORT_10G_BASE - 1;
    	/* max tasks=12, max dma=3, no extra */
    	out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(12) | FMBM_PP_MXD(3));
    	/* FIFO size - 4KB, no extra */
    	out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
    
    	/* Tx 10G port */
    	port_id = TX_PORT_10G_BASE - 1;
    	/* max tasks=12, max dma=3, no extra */
    	out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(12) | FMBM_PP_MXD(3));
    	/* FIFO size - 4KB, no extra */
    	out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
    
    	/* initialize internal buffers data base (linked list) */
    	out_be32(&bmi->fmbm_init, FMBM_INIT_START);
    
    	return 0;
    }
    
    static void fm_init_qmi(struct fm_qmi_common *qmi)
    {
    	/* disable enqueue and dequeue of QMI */
    	clrbits_be32(&qmi->fmqm_gc, FMQM_GC_ENQ_EN | FMQM_GC_DEQ_EN);
    
    	/* disable all error interrupts */
    	out_be32(&qmi->fmqm_eien, FMQM_EIEN_DISABLE_ALL);
    	/* clear all error events */
    	out_be32(&qmi->fmqm_eie, FMQM_EIE_CLEAR_ALL);
    
    	/* disable all interrupts */
    	out_be32(&qmi->fmqm_ien, FMQM_IEN_DISABLE_ALL);
    	/* clear all interrupts */
    	out_be32(&qmi->fmqm_ie, FMQM_IE_CLEAR_ALL);
    }
    
    /* Init common part of FM, index is fm num# like fm as above */
    int fm_init_common(int index, struct ccsr_fman *reg)
    {
    	int rc;
    
    #if defined(CONFIG_SYS_QE_FMAN_FW_IN_NOR)
    	void *addr = (void *)CONFIG_SYS_QE_FMAN_FW_ADDR;
    #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_NAND)
    	size_t fw_length = CONFIG_SYS_QE_FMAN_FW_LENGTH;
    	void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
    
    	rc = nand_read(&nand_info[0], (loff_t)CONFIG_SYS_QE_FMAN_FW_ADDR,
    
    		       &fw_length, (u_char *)addr);
    	if (rc == -EUCLEAN) {
    		printf("NAND read of FMAN firmware at offset 0x%x failed %d\n",
    
    			CONFIG_SYS_QE_FMAN_FW_ADDR, rc);
    
    	}
    #elif defined(CONFIG_SYS_QE_FW_IN_SPIFLASH)
    	struct spi_flash *ucode_flash;
    
    	void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
    
    	int ret = 0;
    
    	ucode_flash = spi_flash_probe(CONFIG_ENV_SPI_BUS, CONFIG_ENV_SPI_CS,
    			CONFIG_ENV_SPI_MAX_HZ, CONFIG_ENV_SPI_MODE);
    	if (!ucode_flash)
    		printf("SF: probe for ucode failed\n");
    	else {
    
    		ret = spi_flash_read(ucode_flash, CONFIG_SYS_QE_FMAN_FW_ADDR,
    				CONFIG_SYS_QE_FMAN_FW_LENGTH, addr);
    
    		if (ret)
    			printf("SF: read for ucode failed\n");
    		spi_flash_free(ucode_flash);
    	}
    
    #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_MMC)
    
    	int dev = CONFIG_SYS_MMC_ENV_DEV;
    
    	void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
    	u32 cnt = CONFIG_SYS_QE_FMAN_FW_LENGTH / 512;
    	u32 blk = CONFIG_SYS_QE_FMAN_FW_ADDR / 512;
    
    	struct mmc *mmc = find_mmc_device(CONFIG_SYS_MMC_ENV_DEV);
    
    	if (!mmc)
    		printf("\nMMC cannot find device for ucode\n");
    	else {
    		printf("\nMMC read: dev # %u, block # %u, count %u ...\n",
    				dev, blk, cnt);
    		mmc_init(mmc);
    
    		(void)mmc->block_dev.block_read(dev, blk, cnt, addr);
    
    		/* flush cache after read */
    		flush_cache((ulong)addr, cnt * 512);
    	}
    
    #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_REMOTE)
    	void *addr = (void *)CONFIG_SYS_QE_FMAN_FW_ADDR;
    
    #endif
    
    	/* Upload the Fman microcode if it's present */
    	rc = fman_upload_firmware(index, &reg->fm_imem, addr);
    	if (rc)
    		return rc;
    
    	setenv_addr("fman_ucode", addr);
    
    
    	fm_init_muram(index, &reg->muram);
    	fm_init_qmi(&reg->fm_qmi_common);
    	fm_init_fpm(&reg->fm_fpm);
    
    	/* clear DMA status */
    	setbits_be32(&reg->fm_dma.fmdmsr, FMDMSR_CLEAR_ALL);
    
    	/* set DMA mode */
    	setbits_be32(&reg->fm_dma.fmdmmr, FMDMMR_SBER);
    
    	return fm_init_bmi(index, &reg->fm_bmi_common);
    }