Skip to content
Snippets Groups Projects
part_efi.c 22.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (C) 2008 RuggedCom, Inc.
     * Richard Retanubun <RichardRetanubun@RuggedCom.com>
     *
    
     * SPDX-License-Identifier:	GPL-2.0+
    
     * NOTE:
     *   when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
     *   limits the maximum size of addressable storage to < 2 Terra Bytes
    
    #include <asm/unaligned.h>
    
    #include <common.h>
    #include <command.h>
    #include <ide.h>
    
    #include <inttypes.h>
    
    #include <linux/ctype.h>
    
    #ifdef HAVE_BLOCK_DEVICE
    
    /**
     * efi_crc32() - EFI version of crc32 function
     * @buf: buffer to calculate crc32 of
     * @len - length of buf
     *
     * Description: Returns EFI-style CRC32 value for @buf
     */
    
    static inline u32 efi_crc32(const void *buf, u32 len)
    
    {
    	return crc32(0, buf, len);
    }
    
    /*
     * Private function prototypes
     */
    
    static int pmbr_part_valid(struct partition *part);
    static int is_pmbr_valid(legacy_mbr * mbr);
    
    static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba,
    				gpt_header *pgpt_head, gpt_entry **pgpt_pte);
    
    static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
    				gpt_header * pgpt_head);
    static int is_pte_valid(gpt_entry * pte);
    
    
    static char *print_efiname(gpt_entry *pte)
    {
    	static char name[PARTNAME_SZ + 1];
    	int i;
    	for (i = 0; i < PARTNAME_SZ; i++) {
    		u8 c;
    		c = pte->partition_name[i] & 0xff;
    		c = (c && !isprint(c)) ? '.' : c;
    		name[i] = c;
    	}
    	name[PARTNAME_SZ] = 0;
    	return name;
    }
    
    
    static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
    
    static inline int is_bootable(gpt_entry *p)
    {
    	return p->attributes.fields.legacy_bios_bootable ||
    		!memcmp(&(p->partition_type_guid), &system_guid,
    			sizeof(efi_guid_t));
    }
    
    
    static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
    		lbaint_t lastlba)
    {
    	uint32_t crc32_backup = 0;
    	uint32_t calc_crc32;
    
    	/* Check the GPT header signature */
    	if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) {
    		printf("%s signature is wrong: 0x%llX != 0x%llX\n",
    		       "GUID Partition Table Header",
    		       le64_to_cpu(gpt_h->signature),
    		       GPT_HEADER_SIGNATURE);
    		return -1;
    	}
    
    	/* Check the GUID Partition Table CRC */
    	memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
    	memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
    
    	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
    		le32_to_cpu(gpt_h->header_size));
    
    	memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
    
    	if (calc_crc32 != le32_to_cpu(crc32_backup)) {
    		printf("%s CRC is wrong: 0x%x != 0x%x\n",
    		       "GUID Partition Table Header",
    		       le32_to_cpu(crc32_backup), calc_crc32);
    		return -1;
    	}
    
    	/*
    	 * Check that the my_lba entry points to the LBA that contains the GPT
    	 */
    	if (le64_to_cpu(gpt_h->my_lba) != lba) {
    		printf("GPT: my_lba incorrect: %llX != " LBAF "\n",
    		       le64_to_cpu(gpt_h->my_lba),
    		       lba);
    		return -1;
    	}
    
    	/*
    	 * Check that the first_usable_lba and that the last_usable_lba are
    	 * within the disk.
    	 */
    	if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
    		printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
    		       le64_to_cpu(gpt_h->first_usable_lba), lastlba);
    		return -1;
    	}
    	if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
    		printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
    		       le64_to_cpu(gpt_h->last_usable_lba), lastlba);
    		return -1;
    	}
    
    	debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
    	      LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
    	      le64_to_cpu(gpt_h->last_usable_lba), lastlba);
    
    	return 0;
    }
    
    static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
    {
    	uint32_t calc_crc32;
    
    	/* Check the GUID Partition Table Entry Array CRC */
    	calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
    		le32_to_cpu(gpt_h->num_partition_entries) *
    		le32_to_cpu(gpt_h->sizeof_partition_entry));
    
    	if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
    		printf("%s: 0x%x != 0x%x\n",
    		       "GUID Partition Table Entry Array CRC is wrong",
    		       le32_to_cpu(gpt_h->partition_entry_array_crc32),
    		       calc_crc32);
    		return -1;
    	}
    
    	return 0;
    }
    
    static void prepare_backup_gpt_header(gpt_header *gpt_h)
    {
    	uint32_t calc_crc32;
    	uint64_t val;
    
    	/* recalculate the values for the Backup GPT Header */
    	val = le64_to_cpu(gpt_h->my_lba);
    	gpt_h->my_lba = gpt_h->alternate_lba;
    	gpt_h->alternate_lba = cpu_to_le64(val);
    
    	gpt_h->partition_entry_lba =
    			cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
    
    	gpt_h->header_crc32 = 0;
    
    	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
    			       le32_to_cpu(gpt_h->header_size));
    	gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
    }
    
    
    #ifdef CONFIG_EFI_PARTITION
    
    /*
     * Public Functions (include/part.h)
     */
    
    void print_part_efi(block_dev_desc_t * dev_desc)
    {
    
    	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
    
    	gpt_entry *gpt_pte = NULL;
    
    	char uuid[37];
    
    		printf("%s: Invalid Argument(s)\n", __func__);
    
    		return;
    	}
    	/* This function validates AND fills in the GPT header and PTE */
    	if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
    
    			 gpt_head, &gpt_pte) != 1) {
    
    		printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
    
    		if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
    				 gpt_head, &gpt_pte) != 1) {
    			printf("%s: *** ERROR: Invalid Backup GPT ***\n",
    			       __func__);
    			return;
    		} else {
    			printf("%s: ***        Using Backup GPT ***\n",
    			       __func__);
    		}
    
    	debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
    
    	printf("Part\tStart LBA\tEnd LBA\t\tName\n");
    
    	printf("\tAttributes\n");
    
    	printf("\tType GUID\n");
    	printf("\tPartition GUID\n");
    
    	for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
    
    		/* Stop at the first non valid PTE */
    		if (!is_pte_valid(&gpt_pte[i]))
    			break;
    
    
    		printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
    
    			le64_to_cpu(gpt_pte[i].starting_lba),
    			le64_to_cpu(gpt_pte[i].ending_lba),
    
    			print_efiname(&gpt_pte[i]));
    
    		printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
    
    		uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
    
    		uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
    
    		printf("\ttype:\t%s\n", uuid);
    
    		uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
    
    		uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
    		printf("\tguid:\t%s\n", uuid);
    
    	free(gpt_pte);
    
    	return;
    }
    
    int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
    				disk_partition_t * info)
    {
    
    	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
    
    	gpt_entry *gpt_pte = NULL;
    
    
    	/* "part" argument must be at least 1 */
    	if (!dev_desc || !info || part < 1) {
    
    		printf("%s: Invalid Argument(s)\n", __func__);
    
    		return -1;
    	}
    
    	/* This function validates AND fills in the GPT header and PTE */
    	if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
    
    			gpt_head, &gpt_pte) != 1) {
    
    		printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
    
    		if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
    				 gpt_head, &gpt_pte) != 1) {
    			printf("%s: *** ERROR: Invalid Backup GPT ***\n",
    			       __func__);
    			return -1;
    		} else {
    			printf("%s: ***        Using Backup GPT ***\n",
    			       __func__);
    		}
    
    	if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
    
    	    !is_pte_valid(&gpt_pte[part - 1])) {
    
    		debug("%s: *** ERROR: Invalid partition number %d ***\n",
    
    		free(gpt_pte);
    
    	/* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
    	info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
    
    	/* The ending LBA is inclusive, to calculate size, add 1 to it */
    
    	info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
    
    	info->blksz = dev_desc->blksz;
    
    	sprintf((char *)info->name, "%s",
    
    			print_efiname(&gpt_pte[part - 1]));
    
    	sprintf((char *)info->type, "U-Boot");
    
    	info->bootable = is_bootable(&gpt_pte[part - 1]);
    
    #ifdef CONFIG_PARTITION_UUIDS
    
    	uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
    			UUID_STR_FORMAT_GUID);
    
    #ifdef CONFIG_PARTITION_TYPE_GUID
    	uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
    			info->type_guid, UUID_STR_FORMAT_GUID);
    #endif
    
    	debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__,
    
    	      info->start, info->size, info->name);
    
    	free(gpt_pte);
    
    int get_partition_info_efi_by_name(block_dev_desc_t *dev_desc,
    	const char *name, disk_partition_t *info)
    {
    	int ret;
    	int i;
    	for (i = 1; i < GPT_ENTRY_NUMBERS; i++) {
    		ret = get_partition_info_efi(dev_desc, i, info);
    		if (ret != 0) {
    			/* no more entries in table */
    			return -1;
    		}
    		if (strcmp(name, (const char *)info->name) == 0) {
    			/* matched */
    			return 0;
    		}
    	}
    	return -2;
    }
    
    
    int test_part_efi(block_dev_desc_t * dev_desc)
    {
    
    	ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
    
    
    	/* Read legacy MBR from block 0 and validate it */
    
    	if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
    		|| (is_pmbr_valid(legacymbr) != 1)) {
    
    /**
     * set_protective_mbr(): Set the EFI protective MBR
     * @param dev_desc - block device descriptor
     *
     * @return - zero on success, otherwise error
     */
    static int set_protective_mbr(block_dev_desc_t *dev_desc)
    {
    	/* Setup the Protective MBR */
    
    	ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1);
    	memset(p_mbr, 0, sizeof(*p_mbr));
    
    
    	if (p_mbr == NULL) {
    		printf("%s: calloc failed!\n", __func__);
    		return -1;
    	}
    	/* Append signature */
    	p_mbr->signature = MSDOS_MBR_SIGNATURE;
    	p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
    	p_mbr->partition_record[0].start_sect = 1;
    
    	p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
    
    
    	/* Write MBR sector to the MMC device */
    	if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) {
    		printf("** Can't write to device %d **\n",
    			dev_desc->dev);
    		return -1;
    	}
    
    	return 0;
    }
    
    int write_gpt_table(block_dev_desc_t *dev_desc,
    		gpt_header *gpt_h, gpt_entry *gpt_e)
    {
    
    	const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
    					   * sizeof(gpt_entry)), dev_desc);
    
    	u32 calc_crc32;
    
    	debug("max lba: %x\n", (u32) dev_desc->lba);
    	/* Setup the Protective MBR */
    	if (set_protective_mbr(dev_desc) < 0)
    		goto err;
    
    	/* Generate CRC for the Primary GPT Header */
    	calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
    			      le32_to_cpu(gpt_h->num_partition_entries) *
    			      le32_to_cpu(gpt_h->sizeof_partition_entry));
    	gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
    
    	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
    			      le32_to_cpu(gpt_h->header_size));
    	gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
    
    	/* Write the First GPT to the block right after the Legacy MBR */
    	if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1)
    		goto err;
    
    
    	if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e)
    	    != pte_blk_cnt)
    
    	prepare_backup_gpt_header(gpt_h);
    
    
    	if (dev_desc->block_write(dev_desc->dev,
    
    				  (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
    				  + 1,
    
    				  pte_blk_cnt, gpt_e) != pte_blk_cnt)
    
    		goto err;
    
    	if (dev_desc->block_write(dev_desc->dev,
    
    				  (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
    				  gpt_h) != 1)
    
    		goto err;
    
    	debug("GPT successfully written to block device!\n");
    	return 0;
    
     err:
    	printf("** Can't write to device %d **\n", dev_desc->dev);
    	return -1;
    }
    
    int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
    		disk_partition_t *partitions, int parts)
    {
    
    	lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
    	lbaint_t start;
    	lbaint_t last_usable_lba = (lbaint_t)
    			le64_to_cpu(gpt_h->last_usable_lba);
    
    	size_t efiname_len, dosname_len;
    
    #ifdef CONFIG_PARTITION_UUIDS
    	char *str_uuid;
    
    #ifdef CONFIG_PARTITION_TYPE_GUID
    	char *str_type_guid;
    	unsigned char *bin_type_guid;
    #endif
    
    
    	for (i = 0; i < parts; i++) {
    		/* partition starting lba */
    		start = partitions[i].start;
    		if (start && (start < offset)) {
    			printf("Partition overlap\n");
    			return -1;
    		}
    		if (start) {
    			gpt_e[i].starting_lba = cpu_to_le64(start);
    			offset = start + partitions[i].size;
    		} else {
    			gpt_e[i].starting_lba = cpu_to_le64(offset);
    			offset += partitions[i].size;
    		}
    
    		if (offset >= last_usable_lba) {
    
    			printf("Partitions layout exceds disk size\n");
    			return -1;
    		}
    		/* partition ending lba */
    		if ((i == parts - 1) && (partitions[i].size == 0))
    			/* extend the last partition to maximuim */
    			gpt_e[i].ending_lba = gpt_h->last_usable_lba;
    		else
    			gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
    
    
    #ifdef CONFIG_PARTITION_TYPE_GUID
    		str_type_guid = partitions[i].type_guid;
    		bin_type_guid = gpt_e[i].partition_type_guid.b;
    		if (strlen(str_type_guid)) {
    			if (uuid_str_to_bin(str_type_guid, bin_type_guid,
    					    UUID_STR_FORMAT_GUID)) {
    				printf("Partition no. %d: invalid type guid: %s\n",
    				       i, str_type_guid);
    				return -1;
    			}
    		} else {
    			/* default partition type GUID */
    			memcpy(bin_type_guid,
    			       &PARTITION_BASIC_DATA_GUID, 16);
    		}
    #else
    
    		/* partition type GUID */
    		memcpy(gpt_e[i].partition_type_guid.b,
    			&PARTITION_BASIC_DATA_GUID, 16);
    
    
    #ifdef CONFIG_PARTITION_UUIDS
    		str_uuid = partitions[i].uuid;
    
    		bin_uuid = gpt_e[i].unique_partition_guid.b;
    
    
    		if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) {
    
    			printf("Partition no. %d: invalid guid: %s\n",
    				i, str_uuid);
    			return -1;
    		}
    #endif
    
    		/* partition attributes */
    		memset(&gpt_e[i].attributes, 0,
    		       sizeof(gpt_entry_attributes));
    
    		/* partition name */
    
    		efiname_len = sizeof(gpt_e[i].partition_name)
    
    		dosname_len = sizeof(partitions[i].name);
    
    		memset(gpt_e[i].partition_name, 0,
    		       sizeof(gpt_e[i].partition_name));
    
    		for (k = 0; k < min(dosname_len, efiname_len); k++)
    
    			gpt_e[i].partition_name[k] =
    				(efi_char16_t)(partitions[i].name[k]);
    
    
    		debug("%s: name: %s offset[%d]: 0x" LBAF
    		      " size[%d]: 0x" LBAF "\n",
    
    		      __func__, partitions[i].name, i,
    		      offset, i, partitions[i].size);
    	}
    
    	return 0;
    }
    
    int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h,
    		char *str_guid, int parts_count)
    {
    	gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
    	gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
    	gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
    	gpt_h->my_lba = cpu_to_le64(1);
    	gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
    	gpt_h->first_usable_lba = cpu_to_le64(34);
    	gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
    	gpt_h->partition_entry_lba = cpu_to_le64(2);
    	gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
    	gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
    	gpt_h->header_crc32 = 0;
    	gpt_h->partition_entry_array_crc32 = 0;
    
    
    	if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
    
    		return -1;
    
    	return 0;
    }
    
    int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid,
    		disk_partition_t *partitions, int parts_count)
    {
    	int ret;
    
    
    	gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header),
    						       dev_desc));
    	gpt_entry *gpt_e;
    
    
    	if (gpt_h == NULL) {
    		printf("%s: calloc failed!\n", __func__);
    		return -1;
    	}
    
    
    	gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS
    					       * sizeof(gpt_entry),
    					       dev_desc));
    
    	if (gpt_e == NULL) {
    		printf("%s: calloc failed!\n", __func__);
    		free(gpt_h);
    		return -1;
    	}
    
    	/* Generate Primary GPT header (LBA1) */
    	ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
    	if (ret)
    		goto err;
    
    	/* Generate partition entries */
    	ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
    	if (ret)
    		goto err;
    
    	/* Write GPT partition table */
    	ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
    
    err:
    	free(gpt_e);
    	free(gpt_h);
    	return ret;
    }
    
    
    int is_valid_gpt_buf(block_dev_desc_t *dev_desc, void *buf)
    {
    	gpt_header *gpt_h;
    	gpt_entry *gpt_e;
    
    	/* determine start of GPT Header in the buffer */
    	gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
    		       dev_desc->blksz);
    	if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
    				dev_desc->lba))
    		return -1;
    
    	/* determine start of GPT Entries in the buffer */
    	gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
    		       dev_desc->blksz);
    	if (validate_gpt_entries(gpt_h, gpt_e))
    		return -1;
    
    	return 0;
    }
    
    int write_mbr_and_gpt_partitions(block_dev_desc_t *dev_desc, void *buf)
    {
    	gpt_header *gpt_h;
    	gpt_entry *gpt_e;
    	int gpt_e_blk_cnt;
    	lbaint_t lba;
    	int cnt;
    
    	if (is_valid_gpt_buf(dev_desc, buf))
    		return -1;
    
    	/* determine start of GPT Header in the buffer */
    	gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
    		       dev_desc->blksz);
    
    	/* determine start of GPT Entries in the buffer */
    	gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
    		       dev_desc->blksz);
    	gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
    				   le32_to_cpu(gpt_h->sizeof_partition_entry)),
    				  dev_desc);
    
    	/* write MBR */
    	lba = 0;	/* MBR is always at 0 */
    	cnt = 1;	/* MBR (1 block) */
    	if (dev_desc->block_write(dev_desc->dev, lba, cnt, buf) != cnt) {
    		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
    		       __func__, "MBR", cnt, lba);
    		return 1;
    	}
    
    	/* write Primary GPT */
    	lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
    	cnt = 1;	/* GPT Header (1 block) */
    	if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_h) != cnt) {
    		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
    		       __func__, "Primary GPT Header", cnt, lba);
    		return 1;
    	}
    
    	lba = le64_to_cpu(gpt_h->partition_entry_lba);
    	cnt = gpt_e_blk_cnt;
    	if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_e) != cnt) {
    		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
    		       __func__, "Primary GPT Entries", cnt, lba);
    		return 1;
    	}
    
    	prepare_backup_gpt_header(gpt_h);
    
    	/* write Backup GPT */
    	lba = le64_to_cpu(gpt_h->partition_entry_lba);
    	cnt = gpt_e_blk_cnt;
    	if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_e) != cnt) {
    		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
    		       __func__, "Backup GPT Entries", cnt, lba);
    		return 1;
    	}
    
    	lba = le64_to_cpu(gpt_h->my_lba);
    	cnt = 1;	/* GPT Header (1 block) */
    	if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_h) != cnt) {
    		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
    		       __func__, "Backup GPT Header", cnt, lba);
    		return 1;
    	}
    
    	return 0;
    }
    
    /*
     * Private functions
     */
    /*
     * pmbr_part_valid(): Check for EFI partition signature
     *
     * Returns: 1 if EFI GPT partition type is found.
     */
    static int pmbr_part_valid(struct partition *part)
    {
    	if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
    
    		get_unaligned_le32(&part->start_sect) == 1UL) {
    
    		return 1;
    	}
    
    	return 0;
    }
    
    /*
     * is_pmbr_valid(): test Protective MBR for validity
     *
     * Returns: 1 if PMBR is valid, 0 otherwise.
     * Validity depends on two things:
     *  1) MSDOS signature is in the last two bytes of the MBR
     *  2) One partition of type 0xEE is found, checked by pmbr_part_valid()
     */
    static int is_pmbr_valid(legacy_mbr * mbr)
    {
    	int i = 0;
    
    
    	if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
    
    		return 0;
    
    	for (i = 0; i < 4; i++) {
    		if (pmbr_part_valid(&mbr->partition_record[i])) {
    			return 1;
    		}
    	}
    	return 0;
    }
    
    /**
     * is_gpt_valid() - tests one GPT header and PTEs for validity
     *
     * lba is the logical block address of the GPT header to test
     * gpt is a GPT header ptr, filled on return.
     * ptes is a PTEs ptr, filled on return.
     *
     * Description: returns 1 if valid,  0 on error.
     * If valid, returns pointers to PTEs.
     */
    
    static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba,
    			gpt_header *pgpt_head, gpt_entry **pgpt_pte)
    
    {
    	if (!dev_desc || !pgpt_head) {
    
    		printf("%s: Invalid Argument(s)\n", __func__);
    
    		return 0;
    	}
    
    	/* Read GPT Header from device */
    
    	if (dev_desc->block_read(dev_desc->dev, (lbaint_t)lba, 1, pgpt_head)
    			!= 1) {
    
    		printf("*** ERROR: Can't read GPT header ***\n");
    		return 0;
    	}
    
    
    	if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
    
    		return 0;
    
    	/* Read and allocate Partition Table Entries */
    	*pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
    	if (*pgpt_pte == NULL) {
    		printf("GPT: Failed to allocate memory for PTE\n");
    		return 0;
    	}
    
    
    	if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
    
    		free(*pgpt_pte);
    
    		return 0;
    	}
    
    	/* We're done, all's well */
    	return 1;
    }
    
    /**
     * alloc_read_gpt_entries(): reads partition entries from disk
     * @dev_desc
     * @gpt - GPT header
     *
     * Description: Returns ptes on success,  NULL on error.
     * Allocates space for PTEs based on information found in @gpt.
     * Notes: remember to free pte when you're done!
     */
    static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
    					 gpt_header * pgpt_head)
    {
    
    	size_t count = 0, blk_cnt;
    
    	gpt_entry *pte = NULL;
    
    	if (!dev_desc || !pgpt_head) {
    
    		printf("%s: Invalid Argument(s)\n", __func__);
    
    	count = le32_to_cpu(pgpt_head->num_partition_entries) *
    		le32_to_cpu(pgpt_head->sizeof_partition_entry);
    
    	debug("%s: count = %u * %u = %zu\n", __func__,
    	      (u32) le32_to_cpu(pgpt_head->num_partition_entries),
    	      (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count);
    
    
    	/* Allocate memory for PTE, remember to FREE */
    	if (count != 0) {
    
    		pte = memalign(ARCH_DMA_MINALIGN,
    			       PAD_TO_BLOCKSIZE(count, dev_desc));
    
    		printf("%s: ERROR: Can't allocate 0x%zX "
    		       "bytes for GPT Entries\n",
    
    		return NULL;
    	}
    
    	/* Read GPT Entries from device */
    
    	blk_cnt = BLOCK_CNT(count, dev_desc);
    
    	if (dev_desc->block_read (dev_desc->dev,
    
    		(lbaint_t)le64_to_cpu(pgpt_head->partition_entry_lba),
    
    		(lbaint_t) (blk_cnt), pte)
    		!= blk_cnt) {
    
    
    		printf("*** ERROR: Can't read GPT Entries ***\n");
    		free(pte);
    		return NULL;
    	}
    	return pte;
    }
    
    /**
     * is_pte_valid(): validates a single Partition Table Entry
     * @gpt_entry - Pointer to a single Partition Table Entry
     *
     * Description: returns 1 if valid,  0 on error.
     */
    static int is_pte_valid(gpt_entry * pte)
    {
    	efi_guid_t unused_guid;
    
    	if (!pte) {
    
    		printf("%s: Invalid Argument(s)\n", __func__);
    
    		return 0;
    	}
    
    	/* Only one validation for now:
    	 * The GUID Partition Type != Unused Entry (ALL-ZERO)
    	 */
    	memset(unused_guid.b, 0, sizeof(unused_guid.b));
    
    	if (memcmp(pte->partition_type_guid.b, unused_guid.b,
    		sizeof(unused_guid.b)) == 0) {
    
    
    		debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
    
    		      (unsigned int)(uintptr_t)pte);