Skip to content
Snippets Groups Projects
greth.c 17.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* Gaisler.com GRETH 10/100/1000 Ethernet MAC driver
     *
     * Driver use polling mode (no Interrupt)
     *
     * (C) Copyright 2007
     * Daniel Hellstrom, Gaisler Research, daniel@gaisler.com
     *
     * See file CREDITS for list of people who contributed to this
     * project.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License as
     * published by the Free Software Foundation; either version 2 of
     * the License, or (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
     * MA 02111-1307 USA
     */
    
    
    #include <common.h>
    #include <command.h>
    #include <net.h>
    
    #include <netdev.h>
    
    #include <malloc.h>
    #include <asm/processor.h>
    #include <ambapp.h>
    #include <asm/leon.h>
    
    #include "greth.h"
    
    /* Default to 3s timeout on autonegotiation */
    #ifndef GRETH_PHY_TIMEOUT_MS
    #define GRETH_PHY_TIMEOUT_MS 3000
    #endif
    
    
    /* Default to PHY adrress 0 not not specified */
    #ifdef CONFIG_SYS_GRLIB_GRETH_PHYADDR
    #define GRETH_PHY_ADR_DEFAULT CONFIG_SYS_GRLIB_GRETH_PHYADDR
    #else
    #define GRETH_PHY_ADR_DEFAULT 0
    #endif
    
    
    /* ByPass Cache when reading regs */
    #define GRETH_REGLOAD(addr)		SPARC_NOCACHE_READ(addr)
    /* Write-through cache ==> no bypassing needed on writes */
    
    #define GRETH_REGSAVE(addr,data) (*(volatile unsigned int *)(addr) = (data))
    
    #define GRETH_REGORIN(addr,data) GRETH_REGSAVE(addr,GRETH_REGLOAD(addr)|data)
    #define GRETH_REGANDIN(addr,data) GRETH_REGSAVE(addr,GRETH_REGLOAD(addr)&data)
    
    #define GRETH_RXBD_CNT 4
    #define GRETH_TXBD_CNT 1
    
    #define GRETH_RXBUF_SIZE 1540
    #define GRETH_BUF_ALIGN 4
    #define GRETH_RXBUF_EFF_SIZE \
    	( (GRETH_RXBUF_SIZE&~(GRETH_BUF_ALIGN-1))+GRETH_BUF_ALIGN )
    
    typedef struct {
    	greth_regs *regs;
    	int irq;
    	struct eth_device *dev;
    
    	/* Hardware info */
    	unsigned char phyaddr;
    	int gbit_mac;
    
    	/* Current operating Mode */
    	int gb;			/* GigaBit */
    	int fd;			/* Full Duplex */
    	int sp;			/* 10/100Mbps speed (1=100,0=10) */
    	int auto_neg;		/* Auto negotiate done */
    
    	unsigned char hwaddr[6];	/* MAC Address */
    
    	/* Descriptors */
    	greth_bd *rxbd_base, *rxbd_max;
    	greth_bd *txbd_base, *txbd_max;
    
    	greth_bd *rxbd_curr;
    
    	/* rx buffers in rx descriptors */
    	void *rxbuf_base;	/* (GRETH_RXBUF_SIZE+ALIGNBYTES) * GRETH_RXBD_CNT */
    
    	/* unused for gbit_mac, temp buffer for sending packets with unligned
    	 * start.
    	 * Pointer to packet allocated with malloc.
    	 */
    	void *txbuf;
    
    	struct {
    		/* rx status */
    		unsigned int rx_packets,
    		    rx_crc_errors, rx_frame_errors, rx_length_errors, rx_errors;
    
    		/* tx stats */
    		unsigned int tx_packets,
    		    tx_latecol_errors,
    		    tx_underrun_errors, tx_limit_errors, tx_errors;
    	} stats;
    } greth_priv;
    
    /* Read MII register 'addr' from core 'regs' */
    
    static int read_mii(int phyaddr, int regaddr, volatile greth_regs * regs)
    
    {
    	while (GRETH_REGLOAD(&regs->mdio) & GRETH_MII_BUSY) {
    	}
    
    
    	GRETH_REGSAVE(&regs->mdio, ((phyaddr & 0x1F) << 11) | ((regaddr & 0x1F) << 6) | 2);
    
    
    	while (GRETH_REGLOAD(&regs->mdio) & GRETH_MII_BUSY) {
    	}
    
    	if (!(GRETH_REGLOAD(&regs->mdio) & GRETH_MII_NVALID)) {
    		return (GRETH_REGLOAD(&regs->mdio) >> 16) & 0xFFFF;
    	} else {
    		return -1;
    	}
    }
    
    
    static void write_mii(int phyaddr, int regaddr, int data, volatile greth_regs * regs)
    
    {
    	while (GRETH_REGLOAD(&regs->mdio) & GRETH_MII_BUSY) {
    	}
    
    	GRETH_REGSAVE(&regs->mdio,
    
    		      ((data & 0xFFFF) << 16) | ((phyaddr & 0x1F) << 11) |
    		      ((regaddr & 0x1F) << 6) | 1);
    
    
    	while (GRETH_REGLOAD(&regs->mdio) & GRETH_MII_BUSY) {
    	}
    
    }
    
    /* init/start hardware and allocate descriptor buffers for rx side
     *
     */
    int greth_init(struct eth_device *dev, bd_t * bis)
    {
    	int i;
    
    	greth_priv *greth = dev->priv;
    	greth_regs *regs = greth->regs;
    
    	/* Reset core */
    	GRETH_REGSAVE(&regs->control, (GRETH_RESET | (greth->gb << 8) |
    		(greth->sp << 7) | (greth->fd << 4)));
    
    	/* Wait for Reset to complete */
    	while ( GRETH_REGLOAD(&regs->control) & GRETH_RESET) ;
    
    	GRETH_REGSAVE(&regs->control,
    		((greth->gb << 8) | (greth->sp << 7) | (greth->fd << 4)));
    
    
    	if (!greth->rxbd_base) {
    
    		/* allocate descriptors */
    		greth->rxbd_base = (greth_bd *)
    		    memalign(0x1000, GRETH_RXBD_CNT * sizeof(greth_bd));
    		greth->txbd_base = (greth_bd *)
    
    		    memalign(0x1000, GRETH_TXBD_CNT * sizeof(greth_bd));
    
    
    		/* allocate buffers to all descriptors  */
    		greth->rxbuf_base =
    		    malloc(GRETH_RXBUF_EFF_SIZE * GRETH_RXBD_CNT);
    	}
    
    	/* initate rx decriptors */
    	for (i = 0; i < GRETH_RXBD_CNT; i++) {
    		greth->rxbd_base[i].addr = (unsigned int)
    		    greth->rxbuf_base + (GRETH_RXBUF_EFF_SIZE * i);
    		/* enable desciptor & set wrap bit if last descriptor */
    		if (i >= (GRETH_RXBD_CNT - 1)) {
    			greth->rxbd_base[i].stat = GRETH_BD_EN | GRETH_BD_WR;
    		} else {
    			greth->rxbd_base[i].stat = GRETH_BD_EN;
    		}
    	}
    
    	/* initiate indexes */
    	greth->rxbd_curr = greth->rxbd_base;
    	greth->rxbd_max = greth->rxbd_base + (GRETH_RXBD_CNT - 1);
    	greth->txbd_max = greth->txbd_base + (GRETH_TXBD_CNT - 1);
    	/*
    	 * greth->txbd_base->addr = 0;
    	 * greth->txbd_base->stat = GRETH_BD_WR;
    	 */
    
    	/* initate tx decriptors */
    	for (i = 0; i < GRETH_TXBD_CNT; i++) {
    		greth->txbd_base[i].addr = 0;
    		/* enable desciptor & set wrap bit if last descriptor */
    
    		if (i >= (GRETH_TXBD_CNT - 1)) {
    
    			greth->txbd_base[i].stat = GRETH_BD_WR;
    		} else {
    			greth->txbd_base[i].stat = 0;
    		}
    	}
    
    	/**** SET HARDWARE REGS ****/
    
    	/* Set pointer to tx/rx descriptor areas */
    	GRETH_REGSAVE(&regs->rx_desc_p, (unsigned int)&greth->rxbd_base[0]);
    	GRETH_REGSAVE(&regs->tx_desc_p, (unsigned int)&greth->txbd_base[0]);
    
    	/* Enable Transmitter, GRETH will now scan descriptors for packets
    	 * to transmitt */
    
    	debug("greth_init: enabling receiver\n");
    
    	GRETH_REGORIN(&regs->control, GRETH_RXEN);
    
    	return 0;
    }
    
    /* Initiate PHY to a relevant speed
     * return:
     *  - 0 = success
     *  - 1 = timeout/fail
     */
    int greth_init_phy(greth_priv * dev, bd_t * bis)
    {
    	greth_regs *regs = dev->regs;
    	int tmp, tmp1, tmp2, i;
    	unsigned int start, timeout;
    
    	int phyaddr = GRETH_PHY_ADR_DEFAULT;
    
    #ifndef CONFIG_SYS_GRLIB_GRETH_PHYADDR
    	/* If BSP doesn't provide a hardcoded PHY address the driver will
    	 * try to autodetect PHY address by stopping the search on the first
    	 * PHY address which has REG0 implemented.
    	 */
    	for (i=0; i<32; i++) {
    		tmp = read_mii(i, 0, regs);
    		if ( (tmp != 0) && (tmp != 0xffff) ) {
    			phyaddr = i;
    			break;
    		}
    	}
    #endif
    
    	/* Save PHY Address */
    	dev->phyaddr = phyaddr;
    
    	debug("GRETH PHY ADDRESS: %d\n", phyaddr);
    
    
    	/* X msecs to ticks */
    	timeout = usec2ticks(GRETH_PHY_TIMEOUT_MS * 1000);
    
    	/* Get system timer0 current value
    	 * Total timeout is 5s
    	 */
    	start = get_timer(0);
    
    	/* get phy control register default values */
    
    
    	while ((tmp = read_mii(phyaddr, 0, regs)) & 0x8000) {
    		if (get_timer(start) > timeout) {
    			debug("greth_init_phy: PHY read 1 failed\n");
    
    	}
    
    	/* reset PHY and wait for completion */
    
    	write_mii(phyaddr, 0, 0x8000 | tmp, regs);
    
    	while (((tmp = read_mii(phyaddr, 0, regs))) & 0x8000) {
    		if (get_timer(start) > timeout) {
    			debug("greth_init_phy: PHY read 2 failed\n");
    
    	}
    
    	/* Check if PHY is autoneg capable and then determine operating
    	 * mode, otherwise force it to 10 Mbit halfduplex
    	 */
    	dev->gb = 0;
    	dev->fd = 0;
    	dev->sp = 0;
    	dev->auto_neg = 0;
    	if (!((tmp >> 12) & 1)) {
    
    	} else {
    		/* wait for auto negotiation to complete and then check operating mode */
    		dev->auto_neg = 1;
    		i = 0;
    
    		while (!(((tmp = read_mii(phyaddr, 1, regs)) >> 5) & 1)) {
    
    			if (get_timer(start) > timeout) {
    				printf("Auto negotiation timed out. "
    				       "Selecting default config\n");
    
    				tmp = read_mii(phyaddr, 0, regs);
    
    				dev->gb = ((tmp >> 6) & 1)
    				    && !((tmp >> 13) & 1);
    				dev->sp = !((tmp >> 6) & 1)
    				    && ((tmp >> 13) & 1);
    				dev->fd = (tmp >> 8) & 1;
    				goto auto_neg_done;
    			}
    		}
    		if ((tmp >> 8) & 1) {
    
    			tmp1 = read_mii(phyaddr, 9, regs);
    			tmp2 = read_mii(phyaddr, 10, regs);
    
    			if ((tmp1 & GRETH_MII_EXTADV_1000FD) &&
    			    (tmp2 & GRETH_MII_EXTPRT_1000FD)) {
    				dev->gb = 1;
    				dev->fd = 1;
    			}
    			if ((tmp1 & GRETH_MII_EXTADV_1000HD) &&
    			    (tmp2 & GRETH_MII_EXTPRT_1000HD)) {
    				dev->gb = 1;
    				dev->fd = 0;
    			}
    		}
    		if ((dev->gb == 0) || ((dev->gb == 1) && (dev->gbit_mac == 0))) {
    
    			tmp1 = read_mii(phyaddr, 4, regs);
    			tmp2 = read_mii(phyaddr, 5, regs);
    
    			if ((tmp1 & GRETH_MII_100TXFD) &&
    			    (tmp2 & GRETH_MII_100TXFD)) {
    				dev->sp = 1;
    				dev->fd = 1;
    			}
    			if ((tmp1 & GRETH_MII_100TXHD) &&
    			    (tmp2 & GRETH_MII_100TXHD)) {
    				dev->sp = 1;
    				dev->fd = 0;
    			}
    			if ((tmp1 & GRETH_MII_10FD) && (tmp2 & GRETH_MII_10FD)) {
    				dev->fd = 1;
    			}
    			if ((dev->gb == 1) && (dev->gbit_mac == 0)) {
    				dev->gb = 0;
    				dev->fd = 0;
    
    				write_mii(phyaddr, 0, dev->sp << 13, regs);
    
    	debug("%s GRETH Ethermac at [0x%x] irq %d. Running \
    
    		%d Mbps %s duplex\n", dev->gbit_mac ? "10/100/1000" : "10/100", (unsigned int)(regs), (unsigned int)(dev->irq), dev->gb ? 1000 : (dev->sp ? 100 : 10), dev->fd ? "full" : "half");
    	/* Read out PHY info if extended registers are available */
    	if (tmp & 1) {
    
    		tmp1 = read_mii(phyaddr, 2, regs);
    		tmp2 = read_mii(phyaddr, 3, regs);
    
    		tmp1 = (tmp1 << 6) | ((tmp2 >> 10) & 0x3F);
    		tmp = tmp2 & 0xF;
    
    		tmp2 = (tmp2 >> 4) & 0x3F;
    
    		debug("PHY: Vendor %x   Device %x    Revision %d\n", tmp1,
    
    		       tmp2, tmp);
    	} else {
    		printf("PHY info not available\n");
    	}
    
    	/* set speed and duplex bits in control register */
    	GRETH_REGORIN(&regs->control,
    		      (dev->gb << 8) | (dev->sp << 7) | (dev->fd << 4));
    
    	return 0;
    }
    
    void greth_halt(struct eth_device *dev)
    {
    	greth_priv *greth;
    	greth_regs *regs;
    	int i;
    
    	if (!dev || !dev->priv)
    		return;
    
    	greth = dev->priv;
    	regs = greth->regs;
    
    	if (!regs)
    		return;
    
    	/* disable receiver/transmitter by clearing the enable bits */
    	GRETH_REGANDIN(&regs->control, ~(GRETH_RXEN | GRETH_TXEN));
    
    	/* reset rx/tx descriptors */
    	if (greth->rxbd_base) {
    		for (i = 0; i < GRETH_RXBD_CNT; i++) {
    			greth->rxbd_base[i].stat =
    			    (i >= (GRETH_RXBD_CNT - 1)) ? GRETH_BD_WR : 0;
    		}
    	}
    
    	if (greth->txbd_base) {
    		for (i = 0; i < GRETH_TXBD_CNT; i++) {
    			greth->txbd_base[i].stat =
    			    (i >= (GRETH_TXBD_CNT - 1)) ? GRETH_BD_WR : 0;
    		}
    	}
    }
    
    
    int greth_send(struct eth_device *dev, void *eth_data, int data_length)
    
    {
    	greth_priv *greth = dev->priv;
    	greth_regs *regs = greth->regs;
    	greth_bd *txbd;
    	void *txbuf;
    	unsigned int status;
    
    	/* send data, wait for data to be sent, then return */
    	if (((unsigned int)eth_data & (GRETH_BUF_ALIGN - 1))
    	    && !greth->gbit_mac) {
    		/* data not aligned as needed by GRETH 10/100, solve this by allocating 4 byte aligned buffer
    		 * and copy data to before giving it to GRETH.
    		 */
    		if (!greth->txbuf) {
    			greth->txbuf = malloc(GRETH_RXBUF_SIZE);
    		}
    
    		txbuf = greth->txbuf;
    
    		/* copy data info buffer */
    		memcpy((char *)txbuf, (char *)eth_data, data_length);
    
    		/* keep buffer to next time */
    	} else {
    		txbuf = (void *)eth_data;
    	}
    	/* get descriptor to use, only 1 supported... hehe easy */
    	txbd = greth->txbd_base;
    
    	/* setup descriptor to wrap around to it self */
    	txbd->addr = (unsigned int)txbuf;
    	txbd->stat = GRETH_BD_EN | GRETH_BD_WR | data_length;
    
    	/* Remind Core which descriptor to use when sending */
    	GRETH_REGSAVE(&regs->tx_desc_p, (unsigned int)txbd);
    
    	/* initate send by enabling transmitter */
    	GRETH_REGORIN(&regs->control, GRETH_TXEN);
    
    	/* Wait for data to be sent */
    	while ((status = GRETH_REGLOAD(&txbd->stat)) & GRETH_BD_EN) {
    		;
    	}
    
    	/* was the packet transmitted succesfully? */
    	if (status & GRETH_TXBD_ERR_AL) {
    		greth->stats.tx_limit_errors++;
    	}
    
    	if (status & GRETH_TXBD_ERR_UE) {
    		greth->stats.tx_underrun_errors++;
    	}
    
    	if (status & GRETH_TXBD_ERR_LC) {
    		greth->stats.tx_latecol_errors++;
    	}
    
    	if (status &
    	    (GRETH_TXBD_ERR_LC | GRETH_TXBD_ERR_UE | GRETH_TXBD_ERR_AL)) {
    		/* any error */
    		greth->stats.tx_errors++;
    		return -1;
    	}
    
    	/* bump tx packet counter */
    	greth->stats.tx_packets++;
    
    	/* return succefully */
    	return 0;
    }
    
    int greth_recv(struct eth_device *dev)
    {
    	greth_priv *greth = dev->priv;
    	greth_regs *regs = greth->regs;
    	greth_bd *rxbd;
    	unsigned int status, len = 0, bad;
    
    	/* Receive One packet only, but clear as many error packets as there are
    	 * available.
    	 */
    	{
    		/* current receive descriptor */
    		rxbd = greth->rxbd_curr;
    
    		/* get status of next received packet */
    		status = GRETH_REGLOAD(&rxbd->stat);
    
    		bad = 0;
    
    		/* stop if no more packets received */
    		if (status & GRETH_BD_EN) {
    			goto done;
    		}
    
    		debug("greth_recv: packet 0x%x, 0x%x, len: %d\n",
    
    		       (unsigned int)rxbd, status, status & GRETH_BD_LEN);
    
    		/* Check status for errors.
    		 */
    		if (status & GRETH_RXBD_ERR_FT) {
    			greth->stats.rx_length_errors++;
    			bad = 1;
    		}
    		if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
    			greth->stats.rx_frame_errors++;
    			bad = 1;
    		}
    		if (status & GRETH_RXBD_ERR_CRC) {
    			greth->stats.rx_crc_errors++;
    			bad = 1;
    		}
    		if (bad) {
    			greth->stats.rx_errors++;
    			printf
    			    ("greth_recv: Bad packet (%d, %d, %d, 0x%08x, %d)\n",
    			     greth->stats.rx_length_errors,
    			     greth->stats.rx_frame_errors,
    			     greth->stats.rx_crc_errors, status,
    			     greth->stats.rx_packets);
    			/* print all rx descriptors */
    			for (i = 0; i < GRETH_RXBD_CNT; i++) {
    				printf("[%d]: Stat=0x%lx, Addr=0x%lx\n", i,
    				       GRETH_REGLOAD(&greth->rxbd_base[i].stat),
    
    				       GRETH_REGLOAD(&greth->rxbd_base[i].addr));
    
    			}
    		} else {
    			/* Process the incoming packet. */
    			len = status & GRETH_BD_LEN;
    			d = (char *)rxbd->addr;
    
    			    ("greth_recv: new packet, length: %d. data: %x %x %x %x %x %x %x %x\n",
    			     len, d[0], d[1], d[2], d[3], d[4], d[5], d[6],
    			     d[7]);
    
    			/* flush all data cache to make sure we're not reading old packet data */
    			sparc_dcache_flush_all();
    
    			/* pass packet on to network subsystem */
    			NetReceive((void *)d, len);
    
    			/* bump stats counters */
    			greth->stats.rx_packets++;
    
    			/* bad is now 0 ==> will stop loop */
    		}
    
    		/* reenable descriptor to receive more packet with this descriptor, wrap around if needed */
    		rxbd->stat =
    		    GRETH_BD_EN |
    		    (((unsigned int)greth->rxbd_curr >=
    		      (unsigned int)greth->rxbd_max) ? GRETH_BD_WR : 0);
    		enable = 1;
    
    		/* increase index */
    		greth->rxbd_curr =
    		    ((unsigned int)greth->rxbd_curr >=
    		     (unsigned int)greth->rxbd_max) ? greth->
    		    rxbd_base : (greth->rxbd_curr + 1);
    
    
    
    	if (enable) {
    		GRETH_REGORIN(&regs->control, GRETH_RXEN);
    	}
          done:
    
    	/* return positive length of packet or 0 if non received */
    
    	return len;
    }
    
    void greth_set_hwaddr(greth_priv * greth, unsigned char *mac)
    {
    	/* save new MAC address */
    	greth->dev->enetaddr[0] = greth->hwaddr[0] = mac[0];
    	greth->dev->enetaddr[1] = greth->hwaddr[1] = mac[1];
    	greth->dev->enetaddr[2] = greth->hwaddr[2] = mac[2];
    	greth->dev->enetaddr[3] = greth->hwaddr[3] = mac[3];
    	greth->dev->enetaddr[4] = greth->hwaddr[4] = mac[4];
    	greth->dev->enetaddr[5] = greth->hwaddr[5] = mac[5];
    	greth->regs->esa_msb = (mac[0] << 8) | mac[1];
    	greth->regs->esa_lsb =
    	    (mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5];
    
    
    	debug("GRETH: New MAC address: %02x:%02x:%02x:%02x:%02x:%02x\n",
    
    	       mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
    }
    
    int greth_initialize(bd_t * bis)
    {
    	greth_priv *greth;
    	ambapp_apbdev apbdev;
    	struct eth_device *dev;
    	int i;
    	char *addr_str, *end;
    	unsigned char addr[6];
    
    	/* Find Device & IRQ via AMBA Plug&Play information */
    	if (ambapp_apb_first(VENDOR_GAISLER, GAISLER_ETHMAC, &apbdev) != 1) {
    		return -1;	/* GRETH not found */
    	}
    
    	greth = (greth_priv *) malloc(sizeof(greth_priv));
    	dev = (struct eth_device *)malloc(sizeof(struct eth_device));
    	memset(dev, 0, sizeof(struct eth_device));
    	memset(greth, 0, sizeof(greth_priv));
    
    	greth->regs = (greth_regs *) apbdev.address;
    	greth->irq = apbdev.irq;
    
    	debug("Found GRETH at %p, irq %d\n", greth->regs, greth->irq);
    
    	dev->priv = (void *)greth;
    	dev->iobase = (unsigned int)greth->regs;
    	dev->init = greth_init;
    	dev->halt = greth_halt;
    	dev->send = greth_send;
    	dev->recv = greth_recv;
    	greth->dev = dev;
    
    	/* Reset Core */
    	GRETH_REGSAVE(&greth->regs->control, GRETH_RESET);
    
    	/* Wait for core to finish reset cycle */
    	while (GRETH_REGLOAD(&greth->regs->control) & GRETH_RESET) ;
    
    	/* Get the phy address which assumed to have been set
    	   correctly with the reset value in hardware */
    	greth->phyaddr = (GRETH_REGLOAD(&greth->regs->mdio) >> 11) & 0x1F;
    
    	/* Check if mac is gigabit capable */
    	greth->gbit_mac = (GRETH_REGLOAD(&greth->regs->control) >> 27) & 1;
    
    	/* Make descriptor string */
    	if (greth->gbit_mac) {
    
    		sprintf(dev->name, "GRETH_10/100/GB");
    
    		sprintf(dev->name, "GRETH_10/100");
    
    	}
    
    	/* initiate PHY, select speed/duplex depending on connected PHY */
    	if (greth_init_phy(greth, bis)) {
    		/* Failed to init PHY (timedout) */
    
    		debug("GRETH[%p]: Failed to init PHY\n", greth->regs);
    
    		return -1;
    	}
    
    	/* Register Device to EtherNet subsystem  */
    	eth_register(dev);
    
    	/* Get MAC address */
    	if ((addr_str = getenv("ethaddr")) != NULL) {
    		for (i = 0; i < 6; i++) {
    			addr[i] =
    			    addr_str ? simple_strtoul(addr_str, &end, 16) : 0;
    			if (addr_str) {
    				addr_str = (*end) ? end + 1 : end;
    			}
    		}
    	} else {
    		/* HW Address not found in environment, Set default HW address */
    		addr[0] = GRETH_HWADDR_0;	/* MSB */
    		addr[1] = GRETH_HWADDR_1;
    		addr[2] = GRETH_HWADDR_2;
    		addr[3] = GRETH_HWADDR_3;
    		addr[4] = GRETH_HWADDR_4;
    		addr[5] = GRETH_HWADDR_5;	/* LSB */
    	}
    
    	/* set and remember MAC address */
    	greth_set_hwaddr(greth, addr);
    
    
    	debug("GRETH[%p]: Initialized successfully\n", greth->regs);