Skip to content
Snippets Groups Projects
enc28j60.c 23.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * (C) Copyright 2010
     * Reinhard Meyer, EMK Elektronik, reinhard.meyer@emk-elektronik.de
     * Martin Krause, Martin.Krause@tqs.de
     * reworked original enc28j60.c
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License as
     * published by the Free Software Foundation; either version 2 of
     * the License, or (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
     * MA 02111-1307 USA
     */
    
    #include <common.h>
    #include <net.h>
    #include <spi.h>
    #include <malloc.h>
    #include <netdev.h>
    #include <miiphy.h>
    #include "enc28j60.h"
    
    /*
     * IMPORTANT: spi_claim_bus() and spi_release_bus()
     * are called at begin and end of each of the following functions:
     * enc_miiphy_read(), enc_miiphy_write(), enc_write_hwaddr(),
     * enc_init(), enc_recv(), enc_send(), enc_halt()
     * ALL other functions assume that the bus has already been claimed!
     * Since NetReceive() might call enc_send() in return, the bus must be
     * released, NetReceive() called and claimed again.
     */
    
    /*
     * Controller memory layout.
     * We only allow 1 frame for transmission and reserve the rest
     * for reception to handle as many broadcast packets as possible.
     * Also use the memory from 0x0000 for receiver buffer. See errata pt. 5
     * 0x0000 - 0x19ff 6656 bytes receive buffer
     * 0x1a00 - 0x1fff 1536 bytes transmit buffer =
     * control(1)+frame(1518)+status(7)+reserve(10).
     */
    #define ENC_RX_BUF_START	0x0000
    #define ENC_RX_BUF_END		0x19ff
    #define ENC_TX_BUF_START	0x1a00
    #define ENC_TX_BUF_END		0x1fff
    #define ENC_MAX_FRM_LEN		1518
    #define RX_RESET_COUNTER	1000
    
    /*
     * For non data transfer functions, like phy read/write, set hwaddr, init
     * we do not need a full, time consuming init including link ready wait.
     * This enum helps to bring the chip through the minimum necessary inits.
     */
    enum enc_initstate {none=0, setupdone, linkready};
    typedef struct enc_device {
    	struct eth_device	*dev;	/* back pointer */
    	struct spi_slave	*slave;
    	int			rx_reset_counter;
    	u16			next_pointer;
    	u8			bank;	/* current bank in enc28j60 */
    	enum enc_initstate	initstate;
    } enc_dev_t;
    
    /*
     * enc_bset:		set bits in a common register
     * enc_bclr:		clear bits in a common register
     *
     * making the reg parameter u8 will give a compile time warning if the
     * functions are called with a register not accessible in all Banks
     */
    static void enc_bset(enc_dev_t *enc, const u8 reg, const u8 data)
    {
    	u8 dout[2];
    
    	dout[0] = CMD_BFS(reg);
    	dout[1] = data;
    	spi_xfer(enc->slave, 2 * 8, dout, NULL,
    		SPI_XFER_BEGIN | SPI_XFER_END);
    }
    
    static void enc_bclr(enc_dev_t *enc, const u8 reg, const u8 data)
    {
    	u8 dout[2];
    
    	dout[0] = CMD_BFC(reg);
    	dout[1] = data;
    	spi_xfer(enc->slave, 2 * 8, dout, NULL,
    		SPI_XFER_BEGIN | SPI_XFER_END);
    }
    
    /*
     * high byte of the register contains bank number:
     * 0: no bank switch necessary
     * 1: switch to bank 0
     * 2: switch to bank 1
     * 3: switch to bank 2
     * 4: switch to bank 3
     */
    static void enc_set_bank(enc_dev_t *enc, const u16 reg)
    {
    	u8 newbank = reg >> 8;
    
    	if (newbank == 0 || newbank == enc->bank)
    		return;
    	switch (newbank) {
    	case 1:
    		enc_bclr(enc, CTL_REG_ECON1,
    			ENC_ECON1_BSEL0 | ENC_ECON1_BSEL1);
    		break;
    	case 2:
    		enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_BSEL0);
    		enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_BSEL1);
    		break;
    	case 3:
    		enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_BSEL0);
    		enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_BSEL1);
    		break;
    	case 4:
    		enc_bset(enc, CTL_REG_ECON1,
    			ENC_ECON1_BSEL0 | ENC_ECON1_BSEL1);
    		break;
    	}
    	enc->bank = newbank;
    }
    
    /*
     * local functions to access SPI
     *
     * reg: register inside ENC28J60
     * data: 8/16 bits to write
     * c: number of retries
     *
     * enc_r8:		read 8 bits
     * enc_r16:		read 16 bits
     * enc_w8:		write 8 bits
     * enc_w16:		write 16 bits
     * enc_w8_retry:	write 8 bits, verify and retry
     * enc_rbuf:		read from ENC28J60 into buffer
     * enc_wbuf:		write from buffer into ENC28J60
     */
    
    /*
     * MAC and MII registers need a 3 byte SPI transfer to read,
     * all other registers need a 2 byte SPI transfer.
     */
    static int enc_reg2nbytes(const u16 reg)
    {
    	/* check if MAC or MII register */
    	return ((reg >= CTL_REG_MACON1 && reg <= CTL_REG_MIRDH) ||
    		(reg >= CTL_REG_MAADR1 && reg <= CTL_REG_MAADR4) ||
    		(reg == CTL_REG_MISTAT)) ? 3 : 2;
    }
    
    /*
     * Read a byte register
     */
    static u8 enc_r8(enc_dev_t *enc, const u16 reg)
    {
    	u8 dout[3];
    	u8 din[3];
    	int nbytes = enc_reg2nbytes(reg);
    
    	enc_set_bank(enc, reg);
    	dout[0] = CMD_RCR(reg);
    	spi_xfer(enc->slave, nbytes * 8, dout, din,
    		SPI_XFER_BEGIN | SPI_XFER_END);
    	return din[nbytes-1];
    }
    
    /*
     * Read a L/H register pair and return a word.
     * Must be called with the L register's address.
     */
    static u16 enc_r16(enc_dev_t *enc, const u16 reg)
    {
    	u8 dout[3];
    	u8 din[3];
    	u16 result;
    	int nbytes = enc_reg2nbytes(reg);
    
    	enc_set_bank(enc, reg);
    	dout[0] = CMD_RCR(reg);
    	spi_xfer(enc->slave, nbytes * 8, dout, din,
    		SPI_XFER_BEGIN | SPI_XFER_END);
    	result = din[nbytes-1];
    	dout[0]++; /* next register */
    	spi_xfer(enc->slave, nbytes * 8, dout, din,
    		SPI_XFER_BEGIN | SPI_XFER_END);
    	result |= din[nbytes-1] << 8;
    	return result;
    }
    
    /*
     * Write a byte register
     */
    static void enc_w8(enc_dev_t *enc, const u16 reg, const u8 data)
    {
    	u8 dout[2];
    
    	enc_set_bank(enc, reg);
    	dout[0] = CMD_WCR(reg);
    	dout[1] = data;
    	spi_xfer(enc->slave, 2 * 8, dout, NULL,
    		SPI_XFER_BEGIN | SPI_XFER_END);
    }
    
    /*
     * Write a L/H register pair.
     * Must be called with the L register's address.
     */
    static void enc_w16(enc_dev_t *enc, const u16 reg, const u16 data)
    {
    	u8 dout[2];
    
    	enc_set_bank(enc, reg);
    	dout[0] = CMD_WCR(reg);
    	dout[1] = data;
    	spi_xfer(enc->slave, 2 * 8, dout, NULL,
    		SPI_XFER_BEGIN | SPI_XFER_END);
    	dout[0]++; /* next register */
    	dout[1] = data >> 8;
    	spi_xfer(enc->slave, 2 * 8, dout, NULL,
    		SPI_XFER_BEGIN | SPI_XFER_END);
    }
    
    /*
     * Write a byte register, verify and retry
     */
    static void enc_w8_retry(enc_dev_t *enc, const u16 reg, const u8 data, const int c)
    {
    	u8 dout[2];
    	u8 readback;
    	int i;
    
    	enc_set_bank(enc, reg);
    	for (i = 0; i < c; i++) {
    		dout[0] = CMD_WCR(reg);
    		dout[1] = data;
    		spi_xfer(enc->slave, 2 * 8, dout, NULL,
    			SPI_XFER_BEGIN | SPI_XFER_END);
    		readback = enc_r8(enc, reg);
    		if (readback == data)
    			break;
    		/* wait 1ms */
    		udelay(1000);
    	}
    	if (i == c) {
    		printf("%s: write reg 0x%03x failed\n", enc->dev->name, reg);
    	}
    }
    
    /*
     * Read ENC RAM into buffer
     */
    static void enc_rbuf(enc_dev_t *enc, const u16 length, u8 *buf)
    {
    	u8 dout[1];
    
    	dout[0] = CMD_RBM;
    	spi_xfer(enc->slave, 8, dout, NULL, SPI_XFER_BEGIN);
    	spi_xfer(enc->slave, length * 8, NULL, buf, SPI_XFER_END);
    #ifdef DEBUG
    	puts("Rx:\n");
    	print_buffer(0, buf, 1, length, 0);
    #endif
    }
    
    /*
     * Write buffer into ENC RAM
     */
    static void enc_wbuf(enc_dev_t *enc, const u16 length, const u8 *buf, const u8 control)
    {
    	u8 dout[2];
    	dout[0] = CMD_WBM;
    	dout[1] = control;
    	spi_xfer(enc->slave, 2 * 8, dout, NULL, SPI_XFER_BEGIN);
    	spi_xfer(enc->slave, length * 8, buf, NULL, SPI_XFER_END);
    #ifdef DEBUG
    	puts("Tx:\n");
    	print_buffer(0, buf, 1, length, 0);
    #endif
    }
    
    /*
     * Try to claim the SPI bus.
     * Print error message on failure.
     */
    static int enc_claim_bus(enc_dev_t *enc)
    {
    	int rc = spi_claim_bus(enc->slave);
    	if (rc)
    		printf("%s: failed to claim SPI bus\n", enc->dev->name);
    	return rc;
    }
    
    /*
     * Release previously claimed SPI bus.
     * This function is mainly for symmetry to enc_claim_bus().
     * Let the toolchain decide to inline it...
     */
    static void enc_release_bus(enc_dev_t *enc)
    {
    	spi_release_bus(enc->slave);
    }
    
    /*
     * Read PHY register
     */
    
    static u16 enc_phy_read(enc_dev_t *enc, const u8 addr)
    
    {
    	uint64_t etime;
    	u8 status;
    
    	enc_w8(enc, CTL_REG_MIREGADR, addr);
    	enc_w8(enc, CTL_REG_MICMD, ENC_MICMD_MIIRD);
    	/* 1 second timeout - only happens on hardware problem */
    	etime = get_ticks() + get_tbclk();
    	/* poll MISTAT.BUSY bit until operation is complete */
    	do
    	{
    		status = enc_r8(enc, CTL_REG_MISTAT);
    	} while (get_ticks() <= etime && (status & ENC_MISTAT_BUSY));
    	if (status & ENC_MISTAT_BUSY) {
    		printf("%s: timeout reading phy\n", enc->dev->name);
    		return 0;
    	}
    	enc_w8(enc, CTL_REG_MICMD, 0);
    	return enc_r16(enc, CTL_REG_MIRDL);
    }
    
    /*
     * Write PHY register
     */
    
    static void enc_phy_write(enc_dev_t *enc, const u8 addr, const u16 data)
    
    {
    	uint64_t etime;
    	u8 status;
    
    	enc_w8(enc, CTL_REG_MIREGADR, addr);
    	enc_w16(enc, CTL_REG_MIWRL, data);
    	/* 1 second timeout - only happens on hardware problem */
    	etime = get_ticks() + get_tbclk();
    	/* poll MISTAT.BUSY bit until operation is complete */
    	do
    	{
    		status = enc_r8(enc, CTL_REG_MISTAT);
    	} while (get_ticks() <= etime && (status & ENC_MISTAT_BUSY));
    	if (status & ENC_MISTAT_BUSY) {
    		printf("%s: timeout writing phy\n", enc->dev->name);
    		return;
    	}
    }
    
    /*
     * Verify link status, wait if necessary
     *
     * Note: with a 10 MBit/s only PHY there is no autonegotiation possible,
     * half/full duplex is a pure setup matter. For the time being, this driver
     * will setup in half duplex mode only.
     */
    static int enc_phy_link_wait(enc_dev_t *enc)
    {
    	u16 status;
    	int duplex;
    	uint64_t etime;
    
    #ifdef CONFIG_ENC_SILENTLINK
    	/* check if we have a link, then just return */
    
    	status = enc_phy_read(enc, PHY_REG_PHSTAT1);
    
    	if (status & ENC_PHSTAT1_LLSTAT)
    		return 0;
    #endif
    
    	/* wait for link with 1 second timeout */
    	etime = get_ticks() + get_tbclk();
    	while (get_ticks() <= etime) {
    
    		status = enc_phy_read(enc, PHY_REG_PHSTAT1);
    
    		if (status & ENC_PHSTAT1_LLSTAT) {
    			/* now we have a link */
    
    			status = enc_phy_read(enc, PHY_REG_PHSTAT2);
    
    			duplex = (status & ENC_PHSTAT2_DPXSTAT) ? 1 : 0;
    			printf("%s: link up, 10Mbps %s-duplex\n",
    				enc->dev->name, duplex ? "full" : "half");
    			return 0;
    		}
    		udelay(1000);
    	}
    
    	/* timeout occured */
    	printf("%s: link down\n", enc->dev->name);
    	return 1;
    }
    
    /*
     * This function resets the receiver only.
     */
    static void enc_reset_rx(enc_dev_t *enc)
    {
    	u8 econ1;
    
    	econ1 = enc_r8(enc, CTL_REG_ECON1);
    	if ((econ1 & ENC_ECON1_RXRST) == 0) {
    		enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_RXRST);
    		enc->rx_reset_counter = RX_RESET_COUNTER;
    	}
    }
    
    /*
     * Reset receiver and reenable it.
     */
    static void enc_reset_rx_call(enc_dev_t *enc)
    {
    	enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_RXRST);
    	enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_RXEN);
    }
    
    /*
     * Copy a packet from the receive ring and forward it to
     * the protocol stack.
     */
    static void enc_receive(enc_dev_t *enc)
    {
    	u8 *packet = (u8 *)NetRxPackets[0];
    	u16 pkt_len;
    	u16 copy_len;
    	u16 status;
    	u8 pkt_cnt = 0;
    	u16 rxbuf_rdpt;
    	u8 hbuf[6];
    
    	enc_w16(enc, CTL_REG_ERDPTL, enc->next_pointer);
    	do {
    		enc_rbuf(enc, 6, hbuf);
    		enc->next_pointer = hbuf[0] | (hbuf[1] << 8);
    		pkt_len = hbuf[2] | (hbuf[3] << 8);
    		status = hbuf[4] | (hbuf[5] << 8);
    		debug("next_pointer=$%04x pkt_len=%u status=$%04x\n",
    			enc->next_pointer, pkt_len, status);
    		if (pkt_len <= ENC_MAX_FRM_LEN)
    			copy_len = pkt_len;
    		else
    			copy_len = 0;
    		if ((status & (1L << 7)) == 0) /* check Received Ok bit */
    			copy_len = 0;
    		/* check if next pointer is resonable */
    		if (enc->next_pointer >= ENC_TX_BUF_START)
    			copy_len = 0;
    		if (copy_len > 0) {
    			enc_rbuf(enc, copy_len, packet);
    		}
    		/* advance read pointer to next pointer */
    		enc_w16(enc, CTL_REG_ERDPTL, enc->next_pointer);
    		/* decrease packet counter */
    		enc_bset(enc, CTL_REG_ECON2, ENC_ECON2_PKTDEC);
    		/*
    		 * Only odd values should be written to ERXRDPTL,
    		 * see errata B4 pt.13
    		 */
    		rxbuf_rdpt = enc->next_pointer - 1;
    		if ((rxbuf_rdpt < enc_r16(enc, CTL_REG_ERXSTL)) ||
    			(rxbuf_rdpt > enc_r16(enc, CTL_REG_ERXNDL))) {
    			enc_w16(enc, CTL_REG_ERXRDPTL,
    				enc_r16(enc, CTL_REG_ERXNDL));
    		} else {
    			enc_w16(enc, CTL_REG_ERXRDPTL, rxbuf_rdpt);
    		}
    		/* read pktcnt */
    		pkt_cnt = enc_r8(enc, CTL_REG_EPKTCNT);
    		if (copy_len == 0) {
    
    			(void)enc_r8(enc, CTL_REG_EIR);
    
    			enc_reset_rx(enc);
    			printf("%s: receive copy_len=0\n", enc->dev->name);
    			continue;
    		}
    		/*
    		 * Because NetReceive() might call enc_send(), we need to
    		 * release the SPI bus, call NetReceive(), reclaim the bus
    		 */
    		enc_release_bus(enc);
    		NetReceive(packet, pkt_len);
    		if (enc_claim_bus(enc))
    			return;
    
    		(void)enc_r8(enc, CTL_REG_EIR);
    
    	} while (pkt_cnt);
    	/* Use EPKTCNT not EIR.PKTIF flag, see errata pt. 6 */
    }
    
    /*
     * Poll for completely received packets.
     */
    static void enc_poll(enc_dev_t *enc)
    {
    	u8 eir_reg;
    	u8 pkt_cnt;
    
    #ifdef CONFIG_USE_IRQ
    	/* clear global interrupt enable bit in enc28j60 */
    	enc_bclr(enc, CTL_REG_EIE, ENC_EIE_INTIE);
    #endif
    
    	(void)enc_r8(enc, CTL_REG_ESTAT);
    
    	eir_reg = enc_r8(enc, CTL_REG_EIR);
    	if (eir_reg & ENC_EIR_TXIF) {
    		/* clear TXIF bit in EIR */
    		enc_bclr(enc, CTL_REG_EIR, ENC_EIR_TXIF);
    	}
    	/* We have to use pktcnt and not pktif bit, see errata pt. 6 */
    	pkt_cnt = enc_r8(enc, CTL_REG_EPKTCNT);
    	if (pkt_cnt > 0) {
    		if ((eir_reg & ENC_EIR_PKTIF) == 0) {
    			debug("enc_poll: pkt cnt > 0, but pktif not set\n");
    		}
    		enc_receive(enc);
    		/*
    		 * clear PKTIF bit in EIR, this should not need to be done
    		 * but it seems like we get problems if we do not
    		 */
    		enc_bclr(enc, CTL_REG_EIR, ENC_EIR_PKTIF);
    	}
    	if (eir_reg & ENC_EIR_RXERIF) {
    		printf("%s: rx error\n", enc->dev->name);
    		enc_bclr(enc, CTL_REG_EIR, ENC_EIR_RXERIF);
    	}
    	if (eir_reg & ENC_EIR_TXERIF) {
    		printf("%s: tx error\n", enc->dev->name);
    		enc_bclr(enc, CTL_REG_EIR, ENC_EIR_TXERIF);
    	}
    #ifdef CONFIG_USE_IRQ
    	/* set global interrupt enable bit in enc28j60 */
    	enc_bset(enc, CTL_REG_EIE, ENC_EIE_INTIE);
    #endif
    }
    
    /*
     * Completely Reset the ENC
     */
    static void enc_reset(enc_dev_t *enc)
    {
    	u8 dout[1];
    
    	dout[0] = CMD_SRC;
    	spi_xfer(enc->slave, 8, dout, NULL,
    		SPI_XFER_BEGIN | SPI_XFER_END);
    	/* sleep 1 ms. See errata pt. 2 */
    	udelay(1000);
    }
    
    /*
     * Initialisation data for most of the ENC registers
     */
    static const u16 enc_initdata[] = {
    	/*
    	 * Setup the buffer space. The reset values are valid for the
    	 * other pointers.
    	 *
    	 * We shall not write to ERXST, see errata pt. 5. Instead we
    	 * have to make sure that ENC_RX_BUS_START is 0.
    	 */
    	CTL_REG_ERXSTL, ENC_RX_BUF_START,
    	CTL_REG_ERXSTH, ENC_RX_BUF_START >> 8,
    	CTL_REG_ERXNDL, ENC_RX_BUF_END,
    	CTL_REG_ERXNDH, ENC_RX_BUF_END >> 8,
    	CTL_REG_ERDPTL, ENC_RX_BUF_START,
    	CTL_REG_ERDPTH, ENC_RX_BUF_START >> 8,
    	/*
    	 * Set the filter to receive only good-CRC, unicast and broadcast
    	 * frames.
    	 * Note: some DHCP servers return their answers as broadcasts!
    	 * So its unwise to remove broadcast from this. This driver
    	 * might incur receiver overruns with packet loss on a broadcast
    	 * flooded network.
    	 */
    	CTL_REG_ERXFCON, ENC_RFR_BCEN | ENC_RFR_UCEN | ENC_RFR_CRCEN,
    
    	/* enable MAC to receive frames */
    	CTL_REG_MACON1,
    		ENC_MACON1_MARXEN | ENC_MACON1_TXPAUS | ENC_MACON1_RXPAUS,
    
    	/* configure pad, tx-crc and duplex */
    	CTL_REG_MACON3,
    		ENC_MACON3_PADCFG0 | ENC_MACON3_TXCRCEN |
    		ENC_MACON3_FRMLNEN,
    
    	/* Allow infinite deferals if the medium is continously busy */
    	CTL_REG_MACON4, ENC_MACON4_DEFER,
    
    	/* Late collisions occur beyond 63 bytes */
    	CTL_REG_MACLCON2, 63,
    
    	/*
    	 * Set (low byte) Non-Back-to_Back Inter-Packet Gap.
    	 * Recommended 0x12
    	 */
    	CTL_REG_MAIPGL, 0x12,
    
    	/*
    	 * Set (high byte) Non-Back-to_Back Inter-Packet Gap.
    	 * Recommended 0x0c for half-duplex. Nothing for full-duplex
    	 */
    	CTL_REG_MAIPGH, 0x0C,
    
    	/* set maximum frame length */
    	CTL_REG_MAMXFLL, ENC_MAX_FRM_LEN,
    	CTL_REG_MAMXFLH, ENC_MAX_FRM_LEN >> 8,
    
    	/*
    	 * Set MAC back-to-back inter-packet gap.
    	 * Recommended 0x12 for half duplex
    	 * and 0x15 for full duplex.
    	 */
    	CTL_REG_MABBIPG, 0x12,
    
    	/* end of table */
    	0xffff
    };
    
    /*
     * Wait for the XTAL oscillator to become ready
     */
    static int enc_clock_wait(enc_dev_t *enc)
    {
    	uint64_t etime;
    
    	/* one second timeout */
    	etime = get_ticks() + get_tbclk();
    
    	/*
    	 * Wait for CLKRDY to become set (i.e., check that we can
    	 * communicate with the ENC)
    	 */
    	do
    	{
    		if (enc_r8(enc, CTL_REG_ESTAT) & ENC_ESTAT_CLKRDY)
    			return 0;
    	} while (get_ticks() <= etime);
    
    	printf("%s: timeout waiting for CLKRDY\n", enc->dev->name);
    	return -1;
    }
    
    /*
     * Write the MAC address into the ENC
     */
    static int enc_write_macaddr(enc_dev_t *enc)
    {
    	unsigned char *p = enc->dev->enetaddr;
    
    	enc_w8_retry(enc, CTL_REG_MAADR5, *p++, 5);
    	enc_w8_retry(enc, CTL_REG_MAADR4, *p++, 5);
    	enc_w8_retry(enc, CTL_REG_MAADR3, *p++, 5);
    	enc_w8_retry(enc, CTL_REG_MAADR2, *p++, 5);
    	enc_w8_retry(enc, CTL_REG_MAADR1, *p++, 5);
    	enc_w8_retry(enc, CTL_REG_MAADR0, *p, 5);
    	return 0;
    }
    
    /*
     * Setup most of the ENC registers
     */
    static int enc_setup(enc_dev_t *enc)
    {
    	u16 phid1 = 0;
    	u16 phid2 = 0;
    	const u16 *tp;
    
    	/* reset enc struct values */
    	enc->next_pointer = ENC_RX_BUF_START;
    	enc->rx_reset_counter = RX_RESET_COUNTER;
    	enc->bank = 0xff;	/* invalidate current bank in enc28j60 */
    
    	/* verify PHY identification */
    
    	phid1 = enc_phy_read(enc, PHY_REG_PHID1);
    	phid2 = enc_phy_read(enc, PHY_REG_PHID2) & ENC_PHID2_MASK;
    
    	if (phid1 != ENC_PHID1_VALUE || phid2 != ENC_PHID2_VALUE) {
    		printf("%s: failed to identify PHY. Found %04x:%04x\n",
    			enc->dev->name, phid1, phid2);
    		return -1;
    	}
    
    	/* now program registers */
    	for (tp = enc_initdata; *tp != 0xffff; tp += 2)
    		enc_w8_retry(enc, tp[0], tp[1], 10);
    
    	/*
    	 * Prevent automatic loopback of data beeing transmitted by setting
    	 * ENC_PHCON2_HDLDIS
    	 */
    
    	enc_phy_write(enc, PHY_REG_PHCON2, (1<<8));
    
    
    	/*
    	 * LEDs configuration
    	 * LEDA: LACFG = 0100 -> display link status
    	 * LEDB: LBCFG = 0111 -> display TX & RX activity
    	 * STRCH = 1 -> LED pulses
    	 */
    
    	enc_phy_write(enc, PHY_REG_PHLCON, 0x0472);
    
    
    	/* Reset PDPXMD-bit => half duplex */
    
    	enc_phy_write(enc, PHY_REG_PHCON1, 0);
    
    
    #ifdef CONFIG_USE_IRQ
    	/* enable interrupts */
    	enc_bset(enc, CTL_REG_EIE, ENC_EIE_PKTIE);
    	enc_bset(enc, CTL_REG_EIE, ENC_EIE_TXIE);
    	enc_bset(enc, CTL_REG_EIE, ENC_EIE_RXERIE);
    	enc_bset(enc, CTL_REG_EIE, ENC_EIE_TXERIE);
    	enc_bset(enc, CTL_REG_EIE, ENC_EIE_INTIE);
    #endif
    
    	return 0;
    }
    
    /*
     * Check if ENC has been initialized.
     * If not, try to initialize it.
     * Remember initialized state in struct.
     */
    static int enc_initcheck(enc_dev_t *enc, const enum enc_initstate requiredstate)
    {
    	if (enc->initstate >= requiredstate)
    		return 0;
    
    	if (enc->initstate < setupdone) {
    		/* Initialize the ENC only */
    		enc_reset(enc);
    		/* if any of functions fails, skip the rest and return an error */
    		if (enc_clock_wait(enc) || enc_setup(enc) || enc_write_macaddr(enc)) {
    			return -1;
    		}
    		enc->initstate = setupdone;
    	}
    	/* if that's all we need, return here */
    	if (enc->initstate >= requiredstate)
    		return 0;
    
    	/* now wait for link ready condition */
    	if (enc_phy_link_wait(enc)) {
    		return -1;
    	}
    	enc->initstate = linkready;
    	return 0;
    }
    
    #if defined(CONFIG_CMD_MII)
    /*
     * Read a PHY register.
     *
     * This function is registered with miiphy_register().
     */
    int enc_miiphy_read(const char *devname, u8 phy_adr, u8 reg, u16 *value)
    {
    	struct eth_device *dev = eth_get_dev_by_name(devname);
    	enc_dev_t *enc;
    
    	if (!dev || phy_adr != 0)
    		return -1;
    
    	enc = dev->priv;
    	if (enc_claim_bus(enc))
    		return -1;
    	if (enc_initcheck(enc, setupdone)) {
    		enc_release_bus(enc);
    		return -1;
    	}
    
    	*value = enc_phy_read(enc, reg);
    
    	enc_release_bus(enc);
    	return 0;
    }
    
    /*
     * Write a PHY register.
     *
     * This function is registered with miiphy_register().
     */
    int enc_miiphy_write(const char *devname, u8 phy_adr, u8 reg, u16 value)
    {
    	struct eth_device *dev = eth_get_dev_by_name(devname);
    	enc_dev_t *enc;
    
    	if (!dev || phy_adr != 0)
    		return -1;
    
    	enc = dev->priv;
    	if (enc_claim_bus(enc))
    		return -1;
    	if (enc_initcheck(enc, setupdone)) {
    		enc_release_bus(enc);
    		return -1;
    	}
    
    	enc_phy_write(enc, reg, value);
    
    	enc_release_bus(enc);
    	return 0;
    }
    #endif
    
    /*
     * Write hardware (MAC) address.
     *
     * This function entered into eth_device structure.
     */
    static int enc_write_hwaddr(struct eth_device *dev)
    {
    	enc_dev_t *enc = dev->priv;
    
    	if (enc_claim_bus(enc))
    		return -1;
    	if (enc_initcheck(enc, setupdone)) {
    		enc_release_bus(enc);
    		return -1;
    	}
    	enc_release_bus(enc);
    	return 0;
    }
    
    /*
     * Initialize ENC28J60 for use.
     *
     * This function entered into eth_device structure.
     */
    static int enc_init(struct eth_device *dev, bd_t *bis)
    {
    	enc_dev_t *enc = dev->priv;
    
    	if (enc_claim_bus(enc))
    		return -1;
    	if (enc_initcheck(enc, linkready)) {
    		enc_release_bus(enc);
    		return -1;
    	}
    	/* enable receive */
    	enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_RXEN);
    	enc_release_bus(enc);
    	return 0;
    }
    
    /*
     * Check for received packets.
     *
     * This function entered into eth_device structure.
     */
    static int enc_recv(struct eth_device *dev)
    {
    	enc_dev_t *enc = dev->priv;
    
    	if (enc_claim_bus(enc))
    		return -1;
    	if (enc_initcheck(enc, linkready)) {
    		enc_release_bus(enc);
    		return -1;
    	}
    	/* Check for dead receiver */
    	if (enc->rx_reset_counter > 0)
    		enc->rx_reset_counter--;
    	else
    		enc_reset_rx_call(enc);
    	enc_poll(enc);
    	enc_release_bus(enc);
    	return 0;
    }
    
    /*
     * Send a packet.
     *
     * This function entered into eth_device structure.
     *
     * Should we wait here until we have a Link? Or shall we leave that to
     * protocol retries?
     */
    static int enc_send(
    	struct eth_device *dev,
    
    	int length)
    {
    	enc_dev_t *enc = dev->priv;
    
    	if (enc_claim_bus(enc))
    		return -1;
    	if (enc_initcheck(enc, linkready)) {
    		enc_release_bus(enc);
    		return -1;
    	}
    	/* setup transmit pointers */
    	enc_w16(enc, CTL_REG_EWRPTL, ENC_TX_BUF_START);
    	enc_w16(enc, CTL_REG_ETXNDL, length + ENC_TX_BUF_START);
    	enc_w16(enc, CTL_REG_ETXSTL, ENC_TX_BUF_START);
    	/* write packet to ENC */
    	enc_wbuf(enc, length, (u8 *) packet, 0x00);
    	/*
    	 * Check that the internal transmit logic has not been altered
    	 * by excessive collisions. Reset transmitter if so.
    	 * See Errata B4 12 and 14.
    	 */
    	if (enc_r8(enc, CTL_REG_EIR) & ENC_EIR_TXERIF) {
    		enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_TXRST);
    		enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_TXRST);
    	}
    	enc_bclr(enc, CTL_REG_EIR, (ENC_EIR_TXERIF | ENC_EIR_TXIF));
    	/* start transmitting */
    	enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_TXRTS);
    	enc_release_bus(enc);
    	return 0;
    }
    
    /*
     * Finish use of ENC.
     *
     * This function entered into eth_device structure.
     */
    static void enc_halt(struct eth_device *dev)
    {
    	enc_dev_t *enc = dev->priv;
    
    	if (enc_claim_bus(enc))
    		return;
    	/* Just disable receiver */
    	enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_RXEN);
    	enc_release_bus(enc);
    }
    
    /*
     * This is the only exported function.
     *
     * It may be called several times with different bus:cs combinations.
     */
    int enc28j60_initialize(unsigned int bus, unsigned int cs,
    	unsigned int max_hz, unsigned int mode)
    {
    	struct eth_device *dev;
    	enc_dev_t *enc;
    
    	/* try to allocate, check and clear eth_device object */
    	dev = malloc(sizeof(*dev));
    	if (!dev) {
    		return -1;
    	}
    	memset(dev, 0, sizeof(*dev));
    
    	/* try to allocate, check and clear enc_dev_t object */
    	enc = malloc(sizeof(*enc));
    	if (!enc) {
    		free(dev);
    		return -1;
    	}
    	memset(enc, 0, sizeof(*enc));
    
    	/* try to setup the SPI slave */
    	enc->slave = spi_setup_slave(bus, cs, max_hz, mode);
    	if (!enc->slave) {
    		printf("enc28j60: invalid SPI device %i:%i\n", bus, cs);
    		free(enc);
    		free(dev);
    		return -1;
    	}
    
    	enc->dev = dev;
    	/* now fill the eth_device object */
    	dev->priv = enc;
    	dev->init = enc_init;
    	dev->halt = enc_halt;
    	dev->send = enc_send;
    	dev->recv = enc_recv;
    	dev->write_hwaddr = enc_write_hwaddr;
    	sprintf(dev->name, "enc%i.%i", bus, cs);
    	eth_register(dev);
    #if defined(CONFIG_CMD_MII)
    	miiphy_register(dev->name, enc_miiphy_read, enc_miiphy_write);
    #endif
    	return 0;
    }