Skip to content
Snippets Groups Projects
e1000_spi.c 13.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • #include <linux/compiler.h>
    
    
    /*-----------------------------------------------------------------------
     * SPI transfer
     *
     * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks
     * "bitlen" bits in the SPI MISO port.  That's just the way SPI works.
     *
     * The source of the outgoing bits is the "dout" parameter and the
     * destination of the input bits is the "din" parameter.  Note that "dout"
     * and "din" can point to the same memory location, in which case the
     * input data overwrites the output data (since both are buffered by
     * temporary variables, this is OK).
     *
     * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will
     * never return an error.
     */
    static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen,
    
    York Sun's avatar
    York Sun committed
    		const void *dout_mem, void *din_mem, bool intr)
    
    {
    	const uint8_t *dout = dout_mem;
    	uint8_t *din = din_mem;
    
    	uint8_t mask = 0;
    	uint32_t eecd;
    	unsigned long i;
    
    	/* Pre-read the control register */
    	eecd = E1000_READ_REG(hw, EECD);
    
    	/* Iterate over each bit */
    	for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) {
    		/* Check for interrupt */
    		if (intr && ctrlc())
    			return -1;
    
    		/* Determine the output bit */
    		if (dout && dout[i >> 3] & mask)
    			eecd |=  E1000_EECD_DI;
    		else
    			eecd &= ~E1000_EECD_DI;
    
    		/* Write the output bit and wait 50us */
    		E1000_WRITE_REG(hw, EECD, eecd);
    		E1000_WRITE_FLUSH(hw);
    		udelay(50);
    
    		/* Poke the clock (waits 50us) */
    		e1000_raise_ee_clk(hw, &eecd);
    
    		/* Now read the input bit */
    		eecd = E1000_READ_REG(hw, EECD);
    		if (din) {
    			if (eecd & E1000_EECD_DO)
    				din[i >> 3] |=  mask;
    			else
    				din[i >> 3] &= ~mask;
    		}
    
    		/* Poke the clock again (waits 50us) */
    		e1000_lower_ee_clk(hw, &eecd);
    	}
    
    	/* Now clear any remaining bits of the input */
    	if (din && (i & 7))
    		din[i >> 3] &= ~((mask << 1) - 1);
    
    	return 0;
    }
    
    #ifdef CONFIG_E1000_SPI_GENERIC
    static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi)
    {
    	return container_of(spi, struct e1000_hw, spi);
    }
    
    /* Not sure why all of these are necessary */
    void spi_init_r(void) { /* Nothing to do */ }
    void spi_init_f(void) { /* Nothing to do */ }
    void spi_init(void)   { /* Nothing to do */ }
    
    struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
    		unsigned int max_hz, unsigned int mode)
    {
    	/* Find the right PCI device */
    	struct e1000_hw *hw = e1000_find_card(bus);
    	if (!hw) {
    		printf("ERROR: No such e1000 device: e1000#%u\n", bus);
    		return NULL;
    	}
    
    	/* Make sure it has an SPI chip */
    	if (hw->eeprom.type != e1000_eeprom_spi) {
    		E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n");
    		return NULL;
    	}
    
    	/* Argument sanity checks */
    	if (cs != 0) {
    		E1000_ERR(hw->nic, "No such SPI chip: %u\n", cs);
    		return NULL;
    	}
    	if (mode != SPI_MODE_0) {
    		E1000_ERR(hw->nic, "Only SPI MODE-0 is supported!\n");
    		return NULL;
    	}
    
    	/* TODO: Use max_hz somehow */
    	E1000_DBG(hw->nic, "EEPROM SPI access requested\n");
    	return &hw->spi;
    }
    
    void spi_free_slave(struct spi_slave *spi)
    {
    
    	__maybe_unused struct e1000_hw *hw = e1000_hw_from_spi(spi);
    
    	E1000_DBG(hw->nic, "EEPROM SPI access released\n");
    }
    
    int spi_claim_bus(struct spi_slave *spi)
    {
    	struct e1000_hw *hw = e1000_hw_from_spi(spi);
    
    	if (e1000_acquire_eeprom(hw)) {
    		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
    		return -1;
    	}
    
    	return 0;
    }
    
    void spi_release_bus(struct spi_slave *spi)
    {
    	struct e1000_hw *hw = e1000_hw_from_spi(spi);
    	e1000_release_eeprom(hw);
    }
    
    /* Skinny wrapper around e1000_spi_xfer */
    int spi_xfer(struct spi_slave *spi, unsigned int bitlen,
    		const void *dout_mem, void *din_mem, unsigned long flags)
    {
    	struct e1000_hw *hw = e1000_hw_from_spi(spi);
    	int ret;
    
    	if (flags & SPI_XFER_BEGIN)
    		e1000_standby_eeprom(hw);
    
    
    York Sun's avatar
    York Sun committed
    	ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, true);
    
    
    	if (flags & SPI_XFER_END)
    		e1000_standby_eeprom(hw);
    
    	return ret;
    }
    
    #endif /* not CONFIG_E1000_SPI_GENERIC */
    
    #ifdef CONFIG_CMD_E1000
    
    /* The EEPROM opcodes */
    #define SPI_EEPROM_ENABLE_WR	0x06
    #define SPI_EEPROM_DISABLE_WR	0x04
    #define SPI_EEPROM_WRITE_STATUS	0x01
    #define SPI_EEPROM_READ_STATUS	0x05
    #define SPI_EEPROM_WRITE_PAGE	0x02
    #define SPI_EEPROM_READ_PAGE	0x03
    
    /* The EEPROM status bits */
    #define SPI_EEPROM_STATUS_BUSY	0x01
    #define SPI_EEPROM_STATUS_WREN	0x02
    
    
    York Sun's avatar
    York Sun committed
    static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, bool intr)
    
    {
    	u8 op[] = { SPI_EEPROM_ENABLE_WR };
    	e1000_standby_eeprom(hw);
    	return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
    }
    
    /*
     * These have been tested to perform correctly, but they are not used by any
     * of the EEPROM commands at this time.
     */
    #if 0
    
    York Sun's avatar
    York Sun committed
    static int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, bool intr)
    
    {
    	u8 op[] = { SPI_EEPROM_DISABLE_WR };
    	e1000_standby_eeprom(hw);
    	return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
    }
    
    static int e1000_spi_eeprom_write_status(struct e1000_hw *hw,
    
    York Sun's avatar
    York Sun committed
    		u8 status, bool intr)
    
    {
    	u8 op[] = { SPI_EEPROM_WRITE_STATUS, status };
    	e1000_standby_eeprom(hw);
    	return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
    }
    #endif
    
    
    York Sun's avatar
    York Sun committed
    static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, bool intr)
    
    {
    	u8 op[] = { SPI_EEPROM_READ_STATUS, 0 };
    	e1000_standby_eeprom(hw);
    	if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr))
    		return -1;
    	return op[1];
    }
    
    static int e1000_spi_eeprom_write_page(struct e1000_hw *hw,
    
    York Sun's avatar
    York Sun committed
    		const void *data, u16 off, u16 len, bool intr)
    
    {
    	u8 op[] = {
    		SPI_EEPROM_WRITE_PAGE,
    		(off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
    	};
    
    	e1000_standby_eeprom(hw);
    
    	if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
    		return -1;
    	if (e1000_spi_xfer(hw, len << 3, data, NULL, intr))
    		return -1;
    
    	return 0;
    }
    
    static int e1000_spi_eeprom_read_page(struct e1000_hw *hw,
    
    York Sun's avatar
    York Sun committed
    		void *data, u16 off, u16 len, bool intr)
    
    {
    	u8 op[] = {
    		SPI_EEPROM_READ_PAGE,
    		(off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
    	};
    
    	e1000_standby_eeprom(hw);
    
    	if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
    		return -1;
    	if (e1000_spi_xfer(hw, len << 3, NULL, data, intr))
    		return -1;
    
    	return 0;
    }
    
    
    York Sun's avatar
    York Sun committed
    static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, bool intr)
    
    {
    	int status;
    	while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) {
    		if (!(status & SPI_EEPROM_STATUS_BUSY))
    			return 0;
    	}
    	return -1;
    }
    
    static int e1000_spi_eeprom_dump(struct e1000_hw *hw,
    
    York Sun's avatar
    York Sun committed
    		void *data, u16 off, unsigned int len, bool intr)
    
    {
    	/* Interruptibly wait for the EEPROM to be ready */
    	if (e1000_spi_eeprom_poll_ready(hw, intr))
    		return -1;
    
    	/* Dump each page in sequence */
    	while (len) {
    		/* Calculate the data bytes on this page */
    		u16 pg_off = off & (hw->eeprom.page_size - 1);
    		u16 pg_len = hw->eeprom.page_size - pg_off;
    		if (pg_len > len)
    			pg_len = len;
    
    		/* Now dump the page */
    		if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr))
    			return -1;
    
    		/* Otherwise go on to the next page */
    		len  -= pg_len;
    		off  += pg_len;
    		data += pg_len;
    	}
    
    	/* We're done! */
    	return 0;
    }
    
    static int e1000_spi_eeprom_program(struct e1000_hw *hw,
    
    York Sun's avatar
    York Sun committed
    		const void *data, u16 off, u16 len, bool intr)
    
    {
    	/* Program each page in sequence */
    	while (len) {
    		/* Calculate the data bytes on this page */
    		u16 pg_off = off & (hw->eeprom.page_size - 1);
    		u16 pg_len = hw->eeprom.page_size - pg_off;
    		if (pg_len > len)
    			pg_len = len;
    
    		/* Interruptibly wait for the EEPROM to be ready */
    		if (e1000_spi_eeprom_poll_ready(hw, intr))
    			return -1;
    
    		/* Enable write access */
    		if (e1000_spi_eeprom_enable_wr(hw, intr))
    			return -1;
    
    		/* Now program the page */
    		if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr))
    			return -1;
    
    		/* Otherwise go on to the next page */
    		len  -= pg_len;
    		off  += pg_len;
    		data += pg_len;
    	}
    
    	/* Wait for the last write to complete */
    	if (e1000_spi_eeprom_poll_ready(hw, intr))
    		return -1;
    
    	/* We're done! */
    	return 0;
    }
    
    static int do_e1000_spi_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
    		int argc, char * const argv[])
    {
    	unsigned int length = 0;
    	u16 i, offset = 0;
    	u8 *buffer;
    	int err;
    
    	if (argc > 2) {
    		cmd_usage(cmdtp);
    		return 1;
    	}
    
    	/* Parse the offset and length */
    	if (argc >= 1)
    		offset = simple_strtoul(argv[0], NULL, 0);
    	if (argc == 2)
    		length = simple_strtoul(argv[1], NULL, 0);
    	else if (offset < (hw->eeprom.word_size << 1))
    		length = (hw->eeprom.word_size << 1) - offset;
    
    	/* Extra sanity checks */
    	if (!length) {
    		E1000_ERR(hw->nic, "Requested zero-sized dump!\n");
    		return 1;
    	}
    	if ((0x10000 < length) || (0x10000 - length < offset)) {
    		E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n");
    		return 1;
    	}
    
    	/* Allocate a buffer to hold stuff */
    	buffer = malloc(length);
    	if (!buffer) {
    		E1000_ERR(hw->nic, "Out of Memory!\n");
    		return 1;
    	}
    
    	/* Acquire the EEPROM and perform the dump */
    	if (e1000_acquire_eeprom(hw)) {
    		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
    		free(buffer);
    		return 1;
    	}
    
    York Sun's avatar
    York Sun committed
    	err = e1000_spi_eeprom_dump(hw, buffer, offset, length, true);
    
    	e1000_release_eeprom(hw);
    	if (err) {
    		E1000_ERR(hw->nic, "Interrupted!\n");
    		free(buffer);
    		return 1;
    	}
    
    	/* Now hexdump the result */
    	printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====",
    			hw->nic->name, offset, offset + length - 1);
    	for (i = 0; i < length; i++) {
    		if ((i & 0xF) == 0)
    			printf("\n%s: %04hX: ", hw->nic->name, offset + i);
    		else if ((i & 0xF) == 0x8)
    			printf(" ");
    		printf(" %02hx", buffer[i]);
    	}
    	printf("\n");
    
    	/* Success! */
    	free(buffer);
    	return 0;
    }
    
    static int do_e1000_spi_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
    		int argc, char * const argv[])
    {
    	unsigned int length;
    	u16 offset;
    	void *dest;
    
    	if (argc != 3) {
    		cmd_usage(cmdtp);
    		return 1;
    	}
    
    	/* Parse the arguments */
    	dest = (void *)simple_strtoul(argv[0], NULL, 16);
    	offset = simple_strtoul(argv[1], NULL, 0);
    	length = simple_strtoul(argv[2], NULL, 0);
    
    	/* Extra sanity checks */
    	if (!length) {
    		E1000_ERR(hw->nic, "Requested zero-sized dump!\n");
    		return 1;
    	}
    	if ((0x10000 < length) || (0x10000 - length < offset)) {
    		E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n");
    		return 1;
    	}
    
    	/* Acquire the EEPROM */
    	if (e1000_acquire_eeprom(hw)) {
    		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
    		return 1;
    	}
    
    	/* Perform the programming operation */
    
    York Sun's avatar
    York Sun committed
    	if (e1000_spi_eeprom_dump(hw, dest, offset, length, true) < 0) {
    
    		E1000_ERR(hw->nic, "Interrupted!\n");
    		e1000_release_eeprom(hw);
    		return 1;
    	}
    
    	e1000_release_eeprom(hw);
    	printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->nic->name);
    	return 0;
    }
    
    static int do_e1000_spi_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
    		int argc, char * const argv[])
    {
    	unsigned int length;
    	const void *source;
    	u16 offset;
    
    	if (argc != 3) {
    		cmd_usage(cmdtp);
    		return 1;
    	}
    
    	/* Parse the arguments */
    	source = (const void *)simple_strtoul(argv[0], NULL, 16);
    	offset = simple_strtoul(argv[1], NULL, 0);
    	length = simple_strtoul(argv[2], NULL, 0);
    
    	/* Acquire the EEPROM */
    	if (e1000_acquire_eeprom(hw)) {
    		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
    		return 1;
    	}
    
    	/* Perform the programming operation */
    
    York Sun's avatar
    York Sun committed
    	if (e1000_spi_eeprom_program(hw, source, offset, length, true) < 0) {
    
    		E1000_ERR(hw->nic, "Interrupted!\n");
    		e1000_release_eeprom(hw);
    		return 1;
    	}
    
    	e1000_release_eeprom(hw);
    	printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->nic->name);
    	return 0;
    }
    
    static int do_e1000_spi_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
    		int argc, char * const argv[])
    {
    
    	uint16_t i, length, checksum = 0, checksum_reg;
    
    York Sun's avatar
    York Sun committed
    	bool upd;
    
    
    	if (argc == 0)
    		upd = 0;
    	else if ((argc == 1) && !strcmp(argv[0], "update"))
    		upd = 1;
    	else {
    		cmd_usage(cmdtp);
    		return 1;
    	}
    
    	/* Allocate a temporary buffer */
    	length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1);
    	buffer = malloc(length);
    	if (!buffer) {
    		E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
    		return 1;
    	}
    
    	/* Acquire the EEPROM */
    	if (e1000_acquire_eeprom(hw)) {
    		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
    		return 1;
    	}
    
    	/* Read the EEPROM */
    
    York Sun's avatar
    York Sun committed
    	if (e1000_spi_eeprom_dump(hw, buffer, 0, length, true) < 0) {
    
    		E1000_ERR(hw->nic, "Interrupted!\n");
    		e1000_release_eeprom(hw);
    		return 1;
    	}
    
    	/* Compute the checksum and read the expected value */
    	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
    		checksum += le16_to_cpu(buffer[i]);
    	checksum = ((uint16_t)EEPROM_SUM) - checksum;
    	checksum_reg = le16_to_cpu(buffer[i]);
    
    	/* Verify it! */
    	if (checksum_reg == checksum) {
    		printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n",
    				hw->nic->name, checksum);
    		e1000_release_eeprom(hw);
    		return 0;
    	}
    
    	/* Hrm, verification failed, print an error */
    	E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
    	E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
    			checksum_reg, checksum);
    
    	/* If they didn't ask us to update it, just return an error */
    	if (!upd) {
    		e1000_release_eeprom(hw);
    		return 1;
    	}
    
    	/* Ok, correct it! */
    	printf("%s: Reprogramming the EEPROM checksum...\n", hw->nic->name);
    	buffer[i] = cpu_to_le16(checksum);
    	if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t),
    
    York Sun's avatar
    York Sun committed
    			sizeof(uint16_t), true)) {
    
    		E1000_ERR(hw->nic, "Interrupted!\n");
    		e1000_release_eeprom(hw);
    		return 1;
    	}
    
    	e1000_release_eeprom(hw);
    	return 0;
    }
    
    int do_e1000_spi(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
    		int argc, char * const argv[])
    {
    	if (argc < 1) {
    		cmd_usage(cmdtp);
    		return 1;
    	}
    
    	/* Make sure it has an SPI chip */
    	if (hw->eeprom.type != e1000_eeprom_spi) {
    		E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n");
    		return 1;
    	}
    
    	/* Check the eeprom sub-sub-command arguments */
    	if (!strcmp(argv[0], "show"))
    		return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1);
    
    	if (!strcmp(argv[0], "dump"))
    		return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1);
    
    	if (!strcmp(argv[0], "program"))
    		return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1);
    
    	if (!strcmp(argv[0], "checksum"))
    		return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1);
    
    	cmd_usage(cmdtp);
    	return 1;
    }
    
    #endif /* not CONFIG_CMD_E1000 */