Skip to content
Snippets Groups Projects
altera_tse.c 26.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Altera 10/100/1000 triple speed ethernet mac driver
     *
     * Copyright (C) 2008 Altera Corporation.
     * Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     */
    #include <config.h>
    #include <common.h>
    #include <malloc.h>
    #include <net.h>
    #include <command.h>
    #include <asm/cache.h>
    #include <asm/dma-mapping.h>
    #include <miiphy.h>
    #include "altera_tse.h"
    
    /* sgdma debug - print descriptor */
    static void alt_sgdma_print_desc(volatile struct alt_sgdma_descriptor *desc)
    {
    	debug("SGDMA DEBUG :\n");
    	debug("desc->source : 0x%x \n", (unsigned int)desc->source);
    	debug("desc->destination : 0x%x \n", (unsigned int)desc->destination);
    	debug("desc->next : 0x%x \n", (unsigned int)desc->next);
    	debug("desc->source_pad : 0x%x \n", (unsigned int)desc->source_pad);
    	debug("desc->destination_pad : 0x%x \n",
    	      (unsigned int)desc->destination_pad);
    	debug("desc->next_pad : 0x%x \n", (unsigned int)desc->next_pad);
    	debug("desc->bytes_to_transfer : 0x%x \n",
    	      (unsigned int)desc->bytes_to_transfer);
    	debug("desc->actual_bytes_transferred : 0x%x \n",
    	      (unsigned int)desc->actual_bytes_transferred);
    	debug("desc->descriptor_status : 0x%x \n",
    	      (unsigned int)desc->descriptor_status);
    	debug("desc->descriptor_control : 0x%x \n",
    	      (unsigned int)desc->descriptor_control);
    }
    
    /* This is a generic routine that the SGDMA mode-specific routines
     * call to populate a descriptor.
     * arg1	    :pointer to first SGDMA descriptor.
     * arg2	    :pointer to next  SGDMA descriptor.
     * arg3	    :Address to where data to be written.
     * arg4	    :Address from where data to be read.
     * arg5	    :no of byte to transaction.
     * arg6	    :variable indicating to generate start of packet or not
     * arg7	    :read fixed
     * arg8	    :write fixed
     * arg9	    :read burst
     * arg10    :write burst
     * arg11    :atlantic_channel number
     */
    static void alt_sgdma_construct_descriptor_burst(
    	volatile struct alt_sgdma_descriptor *desc,
    	volatile struct alt_sgdma_descriptor *next,
    	unsigned int *read_addr,
    	unsigned int *write_addr,
    	unsigned short length_or_eop,
    	int generate_eop,
    	int read_fixed,
    	int write_fixed_or_sop,
    	int read_burst,
    	int write_burst,
    	unsigned char atlantic_channel)
    {
    	/*
    	 * Mark the "next" descriptor as "not" owned by hardware. This prevents
    	 * The SGDMA controller from continuing to process the chain. This is
    	 * done as a single IO write to bypass cache, without flushing
    	 * the entire descriptor, since only the 8-bit descriptor status must
    	 * be flushed.
    	 */
    	if (!next)
    		debug("Next descriptor not defined!!\n");
    
    	next->descriptor_control = (next->descriptor_control &
    		~ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK);
    
    	desc->source = (unsigned int *)((unsigned int)read_addr & 0x1FFFFFFF);
    	desc->destination =
    	    (unsigned int *)((unsigned int)write_addr & 0x1FFFFFFF);
    	desc->next = (unsigned int *)((unsigned int)next & 0x1FFFFFFF);
    	desc->source_pad = 0x0;
    	desc->destination_pad = 0x0;
    	desc->next_pad = 0x0;
    	desc->bytes_to_transfer = length_or_eop;
    	desc->actual_bytes_transferred = 0;
    	desc->descriptor_status = 0x0;
    
    	/* SGDMA burst not currently supported */
    	desc->read_burst = 0;
    	desc->write_burst = 0;
    
    	/*
    	 * Set the descriptor control block as follows:
    	 * - Set "owned by hardware" bit
    	 * - Optionally set "generate EOP" bit
    	 * - Optionally set the "read from fixed address" bit
    	 * - Optionally set the "write to fixed address bit (which serves
    	 *   serves as a "generate SOP" control bit in memory-to-stream mode).
    	 * - Set the 4-bit atlantic channel, if specified
    	 *
    	 * Note this step is performed after all other descriptor information
    	 * has been filled out so that, if the controller already happens to be
    	 * pointing at this descriptor, it will not run (via the "owned by
    	 * hardware" bit) until all other descriptor has been set up.
    	 */
    
    	desc->descriptor_control =
    	    ((ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK) |
    	     (generate_eop ?
    	      ALT_SGDMA_DESCRIPTOR_CONTROL_GENERATE_EOP_MSK : 0x0) |
    	     (read_fixed ?
    	      ALT_SGDMA_DESCRIPTOR_CONTROL_READ_FIXED_ADDRESS_MSK : 0x0) |
    	     (write_fixed_or_sop ?
    	      ALT_SGDMA_DESCRIPTOR_CONTROL_WRITE_FIXED_ADDRESS_MSK : 0x0) |
    	     (atlantic_channel ? ((atlantic_channel & 0x0F) << 3) : 0)
    		    );
    }
    
    static int alt_sgdma_do_sync_transfer(volatile struct alt_sgdma_registers *dev,
    			       volatile struct alt_sgdma_descriptor *desc)
    {
    	unsigned int status;
    	int counter = 0;
    
    	/* Wait for any pending transfers to complete */
    	alt_sgdma_print_desc(desc);
    	status = dev->status;
    
    	counter = 0;
    	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
    		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
    			break;
    	}
    
    	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
    		debug("Timeout waiting sgdma in do sync!\n");
    
    	/*
    	 * Clear any (previous) status register information
    	 * that might occlude our error checking later.
    	 */
    	dev->status = 0xFF;
    
    	/* Point the controller at the descriptor */
    	dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
    	debug("next desc in sgdma 0x%x\n",
    	      (unsigned int)dev->next_descriptor_pointer);
    
    	/*
    	 * Set up SGDMA controller to:
    	 * - Disable interrupt generation
    	 * - Run once a valid descriptor is written to controller
    	 * - Stop on an error with any particular descriptor
    	 */
    	dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
    			ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);
    
    	/* Wait for the descriptor (chain) to complete */
    	status = dev->status;
    	debug("wait for sgdma....");
    	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK)
    		;
    	debug("done\n");
    
    	/* Clear Run */
    	dev->control = (dev->control & (~ALT_SGDMA_CONTROL_RUN_MSK));
    
    	/* Get & clear status register contents */
    	status = dev->status;
    	dev->status = 0xFF;
    
    	/* we really should check if the transfer completes properly */
    	debug("tx sgdma status = 0x%x", status);
    	return 0;
    }
    
    static int alt_sgdma_do_async_transfer(volatile struct alt_sgdma_registers *dev,
    				volatile struct alt_sgdma_descriptor *desc)
    {
    	unsigned int status;
    	int counter = 0;
    
    	/* Wait for any pending transfers to complete */
    	alt_sgdma_print_desc(desc);
    	status = dev->status;
    
    	counter = 0;
    	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
    		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
    			break;
    	}
    
    	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
    		debug("Timeout waiting sgdma in do async!\n");
    
    
    	/*
    	 * Clear the RUN bit in the control register. This is needed
    	 * to restart the SGDMA engine later on.
    	 */
    	dev->control = 0;
    
    
    	/*
    	 * Clear any (previous) status register information
    	 * that might occlude our error checking later.
    	 */
    	dev->status = 0xFF;
    
    	/* Point the controller at the descriptor */
    	dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
    
    	/*
    	 * Set up SGDMA controller to:
    	 * - Disable interrupt generation
    	 * - Run once a valid descriptor is written to controller
    	 * - Stop on an error with any particular descriptor
    	 */
    	dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
    			ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);
    
    	/* we really should check if the transfer completes properly */
    	return 0;
    }
    
    /* u-boot interface */
    static int tse_adjust_link(struct altera_tse_priv *priv)
    {
    	unsigned int refvar;
    
    	refvar = priv->mac_dev->command_config.image;
    
    	if (!(priv->duplexity))
    		refvar |= ALTERA_TSE_CMD_HD_ENA_MSK;
    	else
    		refvar &= ~ALTERA_TSE_CMD_HD_ENA_MSK;
    
    	switch (priv->speed) {
    	case 1000:
    		refvar |= ALTERA_TSE_CMD_ETH_SPEED_MSK;
    		refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
    		break;
    	case 100:
    		refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
    		refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
    		break;
    	case 10:
    		refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
    		refvar |= ALTERA_TSE_CMD_ENA_10_MSK;
    		break;
    	}
    	priv->mac_dev->command_config.image = refvar;
    
    	return 0;
    }
    
    
    static int tse_eth_send(struct eth_device *dev, void *packet, int length)
    
    {
    	struct altera_tse_priv *priv = dev->priv;
    	volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
    	volatile struct alt_sgdma_descriptor *tx_desc =
    	    (volatile struct alt_sgdma_descriptor *)priv->tx_desc;
    
    	volatile struct alt_sgdma_descriptor *tx_desc_cur =
    	    (volatile struct alt_sgdma_descriptor *)&tx_desc[0];
    
    
    	flush_dcache_range((unsigned long)packet,
    			(unsigned long)packet + length);
    
    	alt_sgdma_construct_descriptor_burst(
    		(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
    		(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
    		(unsigned int *)packet,	/* read addr */
    		(unsigned int *)0,
    		length,	/* length or EOP ,will change for each tx */
    		0x1,	/* gen eop */
    		0x0,	/* read fixed */
    		0x1,	/* write fixed or sop */
    		0x0,	/* read burst */
    		0x0,	/* write burst */
    		0x0	/* channel */
    		);
    	debug("TX Packet @ 0x%x,0x%x bytes", (unsigned int)packet, length);
    
    	/* send the packet */
    	debug("sending packet\n");
    	alt_sgdma_do_sync_transfer(tx_sgdma, tx_desc_cur);
    	debug("sent %d bytes\n", tx_desc_cur->actual_bytes_transferred);
    	return tx_desc_cur->actual_bytes_transferred;
    }
    
    static int tse_eth_rx(struct eth_device *dev)
    {
    	int packet_length = 0;
    	struct altera_tse_priv *priv = dev->priv;
    	volatile struct alt_sgdma_descriptor *rx_desc =
    	    (volatile struct alt_sgdma_descriptor *)priv->rx_desc;
    	volatile struct alt_sgdma_descriptor *rx_desc_cur = &rx_desc[0];
    
    	if (rx_desc_cur->descriptor_status &
    	    ALT_SGDMA_DESCRIPTOR_STATUS_TERMINATED_BY_EOP_MSK) {
    		debug("got packet\n");
    		packet_length = rx_desc->actual_bytes_transferred;
    		NetReceive(NetRxPackets[0], packet_length);
    
    		/* start descriptor again */
    
    		flush_dcache_range((unsigned long)(NetRxPackets[0]),
    			(unsigned long)(NetRxPackets[0]) + PKTSIZE_ALIGN);
    
    		alt_sgdma_construct_descriptor_burst(
    			(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
    			(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
    			(unsigned int)0x0,	/* read addr */
    			(unsigned int *)NetRxPackets[0],
    			0x0,	/* length or EOP */
    			0x0,	/* gen eop */
    			0x0,	/* read fixed */
    			0x0,	/* write fixed or sop */
    			0x0,	/* read burst */
    			0x0,	/* write burst */
    			0x0	/* channel */
    		    );
    
    		/* setup the sgdma */
    		alt_sgdma_do_async_transfer(priv->sgdma_rx, &rx_desc[0]);
    
    	}
    
    	return -1;
    }
    
    static void tse_eth_halt(struct eth_device *dev)
    {
    	/* don't do anything! */
    	/* this gets called after each uboot  */
    	/* network command.  don't need to reset the thing all of the time */
    }
    
    static void tse_eth_reset(struct eth_device *dev)
    {
    	/* stop sgdmas, disable tse receive */
    	struct altera_tse_priv *priv = dev->priv;
    	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
    	volatile struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx;
    	volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
    	int counter;
    	volatile struct alt_sgdma_descriptor *rx_desc =
    	    (volatile struct alt_sgdma_descriptor *)&priv->rx_desc[0];
    
    	/* clear rx desc & wait for sgdma to complete */
    	rx_desc->descriptor_control = 0;
    	rx_sgdma->control = 0;
    	counter = 0;
    	while (rx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
    		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
    			break;
    	}
    
    	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
    		debug("Timeout waiting for rx sgdma!\n");
    
    		rx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
    		rx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
    
    	}
    
    	counter = 0;
    	tx_sgdma->control = 0;
    	while (tx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
    		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
    			break;
    	}
    
    	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
    		debug("Timeout waiting for tx sgdma!\n");
    
    		tx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
    		tx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
    
    	}
    	/* reset the mac */
    	mac_dev->command_config.bits.transmit_enable = 1;
    	mac_dev->command_config.bits.receive_enable = 1;
    	mac_dev->command_config.bits.software_reset = 1;
    
    	counter = 0;
    	while (mac_dev->command_config.bits.software_reset) {
    		if (counter++ > ALT_TSE_SW_RESET_WATCHDOG_CNTR)
    			break;
    	}
    
    	if (counter >= ALT_TSE_SW_RESET_WATCHDOG_CNTR)
    		debug("TSEMAC SW reset bit never cleared!\n");
    }
    
    static int tse_mdio_read(struct altera_tse_priv *priv, unsigned int regnum)
    {
    	volatile struct alt_tse_mac *mac_dev;
    	unsigned int *mdio_regs;
    	unsigned int data;
    	u16 value;
    
    	mac_dev = priv->mac_dev;
    
    	/* set mdio address */
    	mac_dev->mdio_phy1_addr = priv->phyaddr;
    	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
    
    	/* get the data */
    	data = mdio_regs[regnum];
    
    	value = data & 0xffff;
    
    	return value;
    }
    
    static int tse_mdio_write(struct altera_tse_priv *priv, unsigned int regnum,
    		   unsigned int value)
    {
    	volatile struct alt_tse_mac *mac_dev;
    	unsigned int *mdio_regs;
    	unsigned int data;
    
    	mac_dev = priv->mac_dev;
    
    	/* set mdio address */
    	mac_dev->mdio_phy1_addr = priv->phyaddr;
    	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
    
    	/* get the data */
    	data = (unsigned int)value;
    
    	mdio_regs[regnum] = data;
    
    	return 0;
    }
    
    /* MDIO access to phy */
    #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
    
    static int altera_tse_miiphy_write(const char *devname, unsigned char addr,
    
    				   unsigned char reg, unsigned short value)
    {
    	struct eth_device *dev;
    	struct altera_tse_priv *priv;
    	dev = eth_get_dev_by_name(devname);
    	priv = dev->priv;
    
    	tse_mdio_write(priv, (uint) reg, (uint) value);
    
    	return 0;
    }
    
    
    static int altera_tse_miiphy_read(const char *devname, unsigned char addr,
    
    				  unsigned char reg, unsigned short *value)
    {
    	struct eth_device *dev;
    	struct altera_tse_priv *priv;
    	volatile struct alt_tse_mac *mac_dev;
    	unsigned int *mdio_regs;
    
    	dev = eth_get_dev_by_name(devname);
    	priv = dev->priv;
    
    	mac_dev = priv->mac_dev;
    	mac_dev->mdio_phy1_addr = (int)addr;
    	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
    
    	*value = 0xffff & mdio_regs[reg];
    
    	return 0;
    
    }
    #endif
    
    /*
     * Also copied from tsec.c
     */
    /* Parse the status register for link, and then do
     * auto-negotiation
     */
    static uint mii_parse_sr(uint mii_reg, struct altera_tse_priv *priv)
    {
    	/*
    	 * Wait if the link is up, and autonegotiation is in progress
    	 * (ie - we're capable and it's not done)
    	 */
    	mii_reg = tse_mdio_read(priv, MIIM_STATUS);
    
    
    	if (!(mii_reg & MIIM_STATUS_LINK) && (mii_reg & BMSR_ANEGCAPABLE)
    	    && !(mii_reg & BMSR_ANEGCOMPLETE)) {
    
    		int i = 0;
    
    		puts("Waiting for PHY auto negotiation to complete");
    
    		while (!(mii_reg & BMSR_ANEGCOMPLETE)) {
    
    			/*
    			 * Timeout reached ?
    			 */
    			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
    				puts(" TIMEOUT !\n");
    				priv->link = 0;
    				return 0;
    			}
    
    			if ((i++ % 1000) == 0)
    				putc('.');
    			udelay(1000);	/* 1 ms */
    			mii_reg = tse_mdio_read(priv, MIIM_STATUS);
    		}
    		puts(" done\n");
    		priv->link = 1;
    		udelay(500000);	/* another 500 ms (results in faster booting) */
    	} else {
    		if (mii_reg & MIIM_STATUS_LINK) {
    			debug("Link is up\n");
    			priv->link = 1;
    		} else {
    			debug("Link is down\n");
    			priv->link = 0;
    		}
    	}
    
    	return 0;
    }
    
    /* Parse the 88E1011's status register for speed and duplex
     * information
     */
    static uint mii_parse_88E1011_psr(uint mii_reg, struct altera_tse_priv *priv)
    {
    	uint speed;
    
    	mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
    
    	if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
    	    !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
    		int i = 0;
    
    		puts("Waiting for PHY realtime link");
    		while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
    			/* Timeout reached ? */
    			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
    				puts(" TIMEOUT !\n");
    				priv->link = 0;
    				break;
    			}
    
    			if ((i++ == 1000) == 0) {
    				i = 0;
    				puts(".");
    			}
    			udelay(1000);	/* 1 ms */
    			mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
    		}
    		puts(" done\n");
    		udelay(500000);	/* another 500 ms (results in faster booting) */
    	} else {
    		if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
    			priv->link = 1;
    		else
    			priv->link = 0;
    	}
    
    	if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
    		priv->duplexity = 1;
    	else
    		priv->duplexity = 0;
    
    	speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
    
    	switch (speed) {
    	case MIIM_88E1011_PHYSTAT_GBIT:
    		priv->speed = 1000;
    		debug("PHY Speed is 1000Mbit\n");
    		break;
    	case MIIM_88E1011_PHYSTAT_100:
    		debug("PHY Speed is 100Mbit\n");
    		priv->speed = 100;
    		break;
    	default:
    		debug("PHY Speed is 10Mbit\n");
    		priv->speed = 10;
    	}
    
    	return 0;
    }
    
    static uint mii_m88e1111s_setmode_sr(uint mii_reg, struct altera_tse_priv *priv)
    {
    	uint mii_data = tse_mdio_read(priv, mii_reg);
    	mii_data &= 0xfff0;
    
    	if ((priv->flags >= 1) && (priv->flags <= 4))
    		mii_data |= 0xb;
    	else if (priv->flags == 5)
    		mii_data |= 0x4;
    
    
    	return mii_data;
    }
    
    static uint mii_m88e1111s_setmode_cr(uint mii_reg, struct altera_tse_priv *priv)
    {
    	uint mii_data = tse_mdio_read(priv, mii_reg);
    	mii_data &= ~0x82;
    
    	if ((priv->flags >= 1) && (priv->flags <= 4))
    		mii_data |= 0x82;
    
    
    	return mii_data;
    }
    
    /*
     * Returns which value to write to the control register.
     * For 10/100, the value is slightly different
     */
    static uint mii_cr_init(uint mii_reg, struct altera_tse_priv *priv)
    {
    	return MIIM_CONTROL_INIT;
    }
    
    /*
     * PHY & MDIO code
     * Need to add SGMII stuff
     *
     */
    
    static struct phy_info phy_info_M88E1111S = {
    	0x01410cc,
    	"Marvell 88E1111S",
    	4,
    	(struct phy_cmd[]){	/* config */
    			   /* Reset and configure the PHY */
    			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
    			   {MIIM_88E1111_PHY_EXT_SR, 0x848f,
    			    &mii_m88e1111s_setmode_sr},
    			   /* Delay RGMII TX and RX */
    			   {MIIM_88E1111_PHY_EXT_CR, 0x0cd2,
    			    &mii_m88e1111s_setmode_cr},
    			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
    			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
    			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
    			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
    			   {miim_end,}
    			   },
    	(struct phy_cmd[]){	/* startup */
    			   /* Status is read once to clear old link state */
    			   {MIIM_STATUS, miim_read, NULL},
    			   /* Auto-negotiate */
    			   {MIIM_STATUS, miim_read, &mii_parse_sr},
    			   /* Read the status */
    			   {MIIM_88E1011_PHY_STATUS, miim_read,
    			    &mii_parse_88E1011_psr},
    			   {miim_end,}
    			   },
    	(struct phy_cmd[]){	/* shutdown */
    			   {miim_end,}
    			   },
    };
    
    /* a generic flavor.  */
    static struct phy_info phy_info_generic = {
    	0,
    	"Unknown/Generic PHY",
    	32,
    	(struct phy_cmd[]){	/* config */
    
    			   {MII_BMCR, BMCR_RESET, NULL},
    			   {MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART, NULL},
    
    			   {miim_end,}
    			   },
    	(struct phy_cmd[]){	/* startup */
    
    			   {MII_BMSR, miim_read, NULL},
    			   {MII_BMSR, miim_read, &mii_parse_sr},
    
    			   {miim_end,}
    			   },
    	(struct phy_cmd[]){	/* shutdown */
    			   {miim_end,}
    			   }
    };
    
    static struct phy_info *phy_info[] = {
    	&phy_info_M88E1111S,
    	NULL
    };
    
     /* Grab the identifier of the device's PHY, and search through
      * all of the known PHYs to see if one matches.	 If so, return
      * it, if not, return NULL
      */
    static struct phy_info *get_phy_info(struct eth_device *dev)
    {
    	struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
    	uint phy_reg, phy_ID;
    	int i;
    	struct phy_info *theInfo = NULL;
    
    	/* Grab the bits from PHYIR1, and put them in the upper half */
    	phy_reg = tse_mdio_read(priv, MIIM_PHYIR1);
    	phy_ID = (phy_reg & 0xffff) << 16;
    
    	/* Grab the bits from PHYIR2, and put them in the lower half */
    	phy_reg = tse_mdio_read(priv, MIIM_PHYIR2);
    	phy_ID |= (phy_reg & 0xffff);
    
    	/* loop through all the known PHY types, and find one that */
    	/* matches the ID we read from the PHY. */
    	for (i = 0; phy_info[i]; i++) {
    		if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
    			theInfo = phy_info[i];
    			break;
    		}
    	}
    
    	if (theInfo == NULL) {
    		theInfo = &phy_info_generic;
    		debug("%s: No support for PHY id %x; assuming generic\n",
    		      dev->name, phy_ID);
    	} else
    		debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
    
    	return theInfo;
    }
    
    /* Execute the given series of commands on the given device's
     * PHY, running functions as necessary
     */
    static void phy_run_commands(struct altera_tse_priv *priv, struct phy_cmd *cmd)
    {
    	int i;
    	uint result;
    
    	for (i = 0; cmd->mii_reg != miim_end; i++) {
    		if (cmd->mii_data == miim_read) {
    			result = tse_mdio_read(priv, cmd->mii_reg);
    
    			if (cmd->funct != NULL)
    				(*(cmd->funct)) (result, priv);
    
    		} else {
    			if (cmd->funct != NULL)
    				result = (*(cmd->funct)) (cmd->mii_reg, priv);
    			else
    				result = cmd->mii_data;
    
    			tse_mdio_write(priv, cmd->mii_reg, result);
    
    		}
    		cmd++;
    	}
    }
    
    /* Phy init code */
    static int init_phy(struct eth_device *dev)
    {
    	struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
    	struct phy_info *curphy;
    
    	/* Get the cmd structure corresponding to the attached
    	 * PHY */
    	curphy = get_phy_info(dev);
    
    	if (curphy == NULL) {
    		priv->phyinfo = NULL;
    		debug("%s: No PHY found\n", dev->name);
    
    		return 0;
    	} else
    		debug("%s found\n", curphy->name);
    	priv->phyinfo = curphy;
    
    	phy_run_commands(priv, priv->phyinfo->config);
    
    	return 1;
    }
    
    
    static int tse_set_mac_address(struct eth_device *dev)
    {
    	struct altera_tse_priv *priv = dev->priv;
    	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
    
    	debug("Setting MAC address to 0x%02x%02x%02x%02x%02x%02x\n",
    	      dev->enetaddr[5], dev->enetaddr[4],
    	      dev->enetaddr[3], dev->enetaddr[2],
    	      dev->enetaddr[1], dev->enetaddr[0]);
    	mac_dev->mac_addr_0 = ((dev->enetaddr[3]) << 24 |
    			       (dev->enetaddr[2]) << 16 |
    			       (dev->enetaddr[1]) << 8 | (dev->enetaddr[0]));
    
    	mac_dev->mac_addr_1 = ((dev->enetaddr[5] << 8 |
    				(dev->enetaddr[4])) & 0xFFFF);
    
    	/* Set the MAC address */
    	mac_dev->supp_mac_addr_0_0 = mac_dev->mac_addr_0;
    	mac_dev->supp_mac_addr_0_1 = mac_dev->mac_addr_1;
    
    	/* Set the MAC address */
    	mac_dev->supp_mac_addr_1_0 = mac_dev->mac_addr_0;
    	mac_dev->supp_mac_addr_1_1 = mac_dev->mac_addr_1;
    
    	/* Set the MAC address */
    	mac_dev->supp_mac_addr_2_0 = mac_dev->mac_addr_0;
    	mac_dev->supp_mac_addr_2_1 = mac_dev->mac_addr_1;
    
    	/* Set the MAC address */
    	mac_dev->supp_mac_addr_3_0 = mac_dev->mac_addr_0;
    	mac_dev->supp_mac_addr_3_1 = mac_dev->mac_addr_1;
    	return 0;
    }
    
    
    static int tse_eth_init(struct eth_device *dev, bd_t * bd)
    {
    	int dat;
    	struct altera_tse_priv *priv = dev->priv;
    	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
    	volatile struct alt_sgdma_descriptor *tx_desc = priv->tx_desc;
    	volatile struct alt_sgdma_descriptor *rx_desc = priv->rx_desc;
    	volatile struct alt_sgdma_descriptor *rx_desc_cur =
    	    (volatile struct alt_sgdma_descriptor *)&rx_desc[0];
    
    	/* stop controller */
    	debug("Reseting TSE & SGDMAs\n");
    	tse_eth_reset(dev);
    
    	/* start the phy */
    	debug("Configuring PHY\n");
    	phy_run_commands(priv, priv->phyinfo->startup);
    
    	/* need to create sgdma */
    	debug("Configuring tx desc\n");
    	alt_sgdma_construct_descriptor_burst(
    		(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
    		(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
    		(unsigned int *)NULL,	/* read addr */
    		(unsigned int *)0,
    		0,	/* length or EOP ,will change for each tx */
    		0x1,	/* gen eop */
    		0x0,	/* read fixed */
    		0x1,	/* write fixed or sop */
    		0x0,	/* read burst */
    		0x0,	/* write burst */
    		0x0	/* channel */
    		);
    	debug("Configuring rx desc\n");
    
    	flush_dcache_range((unsigned long)(NetRxPackets[0]),
    			(unsigned long)(NetRxPackets[0]) + PKTSIZE_ALIGN);
    
    	alt_sgdma_construct_descriptor_burst(
    		(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
    		(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
    		(unsigned int)0x0,	/* read addr */
    		(unsigned int *)NetRxPackets[0],
    		0x0,	/* length or EOP */
    		0x0,	/* gen eop */
    		0x0,	/* read fixed */
    		0x0,	/* write fixed or sop */
    		0x0,	/* read burst */
    		0x0,	/* write burst */
    		0x0	/* channel */
    		);
    	/* start rx async transfer */
    	debug("Starting rx sgdma\n");
    	alt_sgdma_do_async_transfer(priv->sgdma_rx, rx_desc_cur);
    
    	/* start TSE */
    	debug("Configuring TSE Mac\n");
    	/* Initialize MAC registers */
    	mac_dev->max_frame_length = PKTSIZE_ALIGN;
    	mac_dev->rx_almost_empty_threshold = 8;
    	mac_dev->rx_almost_full_threshold = 8;
    	mac_dev->tx_almost_empty_threshold = 8;
    	mac_dev->tx_almost_full_threshold = 3;
    	mac_dev->tx_sel_empty_threshold =
    	    CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
    	mac_dev->tx_sel_full_threshold = 0;
    	mac_dev->rx_sel_empty_threshold =
    	    CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
    	mac_dev->rx_sel_full_threshold = 0;
    
    	/* NO Shift */
    	mac_dev->rx_cmd_stat.bits.rx_shift16 = 0;
    	mac_dev->tx_cmd_stat.bits.tx_shift16 = 0;
    
    	/* enable MAC */
    	dat = 0;
    	dat = ALTERA_TSE_CMD_TX_ENA_MSK | ALTERA_TSE_CMD_RX_ENA_MSK;
    
    	mac_dev->command_config.image = dat;
    
    	/* configure the TSE core  */
    	/*  -- output clocks,  */
    	/*  -- and later config stuff for SGMII */
    	if (priv->link) {
    		debug("Adjusting TSE to link speed\n");
    		tse_adjust_link(priv);
    	}
    
    	return priv->link ? 0 : -1;
    }
    
    /* TSE init code */
    int altera_tse_initialize(u8 dev_num, int mac_base,
    
    			  int sgdma_rx_base, int sgdma_tx_base,
    			  u32 sgdma_desc_base, u32 sgdma_desc_size)
    
    {
    	struct altera_tse_priv *priv;
    	struct eth_device *dev;
    	struct alt_sgdma_descriptor *rx_desc;
    	struct alt_sgdma_descriptor *tx_desc;
    	unsigned long dma_handle;
    
    	dev = (struct eth_device *)malloc(sizeof *dev);
    
    	if (NULL == dev)
    		return 0;
    
    	memset(dev, 0, sizeof *dev);
    
    	priv = malloc(sizeof(*priv));
    
    	if (!priv) {
    		free(dev);
    		return 0;
    	}
    
    	if (sgdma_desc_size) {
    		if (sgdma_desc_size < (sizeof(*tx_desc) * (3 + PKTBUFSRX))) {
    			printf("ALTERA_TSE-%hu: "
    			       "descriptor memory is too small\n", dev_num);
    			free(priv);
    			free(dev);
    			return 0;
    		}
    		tx_desc = (struct alt_sgdma_descriptor *)sgdma_desc_base;
    	} else {
    		tx_desc = dma_alloc_coherent(sizeof(*tx_desc) * (3 + PKTBUFSRX),
    					     &dma_handle);
    	}
    
    
    	rx_desc = tx_desc + 2;
    	debug("tx desc: address = 0x%x\n", (unsigned int)tx_desc);
    	debug("rx desc: address = 0x%x\n", (unsigned int)rx_desc);
    
    	if (!tx_desc) {
    		free(priv);
    		free(dev);
    		return 0;
    	}
    	memset(rx_desc, 0, (sizeof *rx_desc) * (PKTBUFSRX + 1));
    	memset(tx_desc, 0, (sizeof *tx_desc) * 2);
    
    	/* initialize tse priv */
    	priv->mac_dev = (volatile struct alt_tse_mac *)mac_base;
    	priv->sgdma_rx = (volatile struct alt_sgdma_registers *)sgdma_rx_base;
    	priv->sgdma_tx = (volatile struct alt_sgdma_registers *)sgdma_tx_base;
    	priv->phyaddr = CONFIG_SYS_ALTERA_TSE_PHY_ADDR;
    	priv->flags = CONFIG_SYS_ALTERA_TSE_FLAGS;
    	priv->rx_desc = rx_desc;
    	priv->tx_desc = tx_desc;
    
    	/* init eth structure */
    	dev->priv = priv;
    	dev->init = tse_eth_init;
    	dev->halt = tse_eth_halt;
    	dev->send = tse_eth_send;
    	dev->recv = tse_eth_rx;
    
    	dev->write_hwaddr = tse_set_mac_address;
    
    	sprintf(dev->name, "%s-%hu", "ALTERA_TSE", dev_num);
    
    	eth_register(dev);
    
    #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
    	miiphy_register(dev->name, altera_tse_miiphy_read,
    			altera_tse_miiphy_write);
    #endif
    
    	init_phy(dev);
    
    	return 1;
    }