Newer
Older
/*
* Copyright 2013-2014 Freescale Semiconductor, Inc.
*
* Freescale Quad Serial Peripheral Interface (QSPI) driver
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <spi.h>
#include <asm/io.h>
#include <linux/sizes.h>
#include "fsl_qspi.h"
#define RX_BUFFER_SIZE 0x80
#ifdef CONFIG_MX6SX
#define TX_BUFFER_SIZE 0x200
#else
#define OFFSET_BITS_MASK 0x00ffffff
#define FLASH_STATUS_WEL 0x02
/* SEQID */
#define SEQID_WREN 1
#define SEQID_FAST_READ 2
#define SEQID_RDSR 3
#define SEQID_SE 4
#define SEQID_CHIP_ERASE 5
#define SEQID_PP 6
#define SEQID_RDID 7
#ifdef CONFIG_SPI_FLASH_BAR
#define SEQID_BRRD 9
#define SEQID_BRWR 10
#define SEQID_RDEAR 11
#define SEQID_WREAR 12
#endif
/* QSPI CMD */
#define QSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */
#define QSPI_CMD_RDSR 0x05 /* Read status register */
#define QSPI_CMD_WREN 0x06 /* Write enable */
#define QSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */
#define QSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */
#define QSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */
#define QSPI_CMD_RDID 0x9f /* Read JEDEC ID */
/* Used for Micron, winbond and Macronix flashes */
#define QSPI_CMD_WREAR 0xc5 /* EAR register write */
#define QSPI_CMD_RDEAR 0xc8 /* EAR reigster read */
/* Used for Spansion flashes only. */
#define QSPI_CMD_BRRD 0x16 /* Bank register read */
#define QSPI_CMD_BRWR 0x17 /* Bank register write */
/* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
#define QSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
#define QSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */
#define QSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */
#ifdef CONFIG_SYS_FSL_QSPI_LE
#define qspi_read32 in_le32
#define qspi_write32 out_le32
#elif defined(CONFIG_SYS_FSL_QSPI_BE)
#define qspi_read32 in_be32
#define qspi_write32 out_be32
#endif
static unsigned long spi_bases[] = {
QSPI0_BASE_ADDR,
};
static unsigned long amba_bases[] = {
QSPI0_AMBA_BASE,
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
};
struct fsl_qspi {
struct spi_slave slave;
unsigned long reg_base;
unsigned long amba_base;
u32 sf_addr;
u8 cur_seqid;
};
/* QSPI support swapping the flash read/write data
* in hardware for LS102xA, but not for VF610 */
static inline u32 qspi_endian_xchg(u32 data)
{
#ifdef CONFIG_VF610
return swab32(data);
#else
return data;
#endif
}
static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
{
return container_of(slave, struct fsl_qspi, slave);
}
static void qspi_set_lut(struct fsl_qspi *qspi)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
u32 lut_base;
/* Unlock the LUT */
qspi_write32(®s->lutkey, LUT_KEY_VALUE);
qspi_write32(®s->lckcr, QSPI_LCKCR_UNLOCK);
/* Write Enable */
lut_base = SEQID_WREN * 4;
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
qspi_write32(®s->lut[lut_base + 1], 0);
qspi_write32(®s->lut[lut_base + 2], 0);
qspi_write32(®s->lut[lut_base + 3], 0);
/* Fast Read */
lut_base = SEQID_FAST_READ * 4;
#ifdef CONFIG_SPI_FLASH_BAR
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_FAST_READ) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_FAST_READ) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
else
qspi_write32(®s->lut[lut_base],
OPRND0(QSPI_CMD_FAST_READ_4B) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
INSTR1(LUT_ADDR));
qspi_write32(®s->lut[lut_base + 1], OPRND0(8) | PAD0(LUT_PAD1) |
INSTR0(LUT_DUMMY) | OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
INSTR1(LUT_READ));
qspi_write32(®s->lut[lut_base + 2], 0);
qspi_write32(®s->lut[lut_base + 3], 0);
/* Read Status */
lut_base = SEQID_RDSR * 4;
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
qspi_write32(®s->lut[lut_base + 1], 0);
qspi_write32(®s->lut[lut_base + 2], 0);
qspi_write32(®s->lut[lut_base + 3], 0);
/* Erase a sector */
lut_base = SEQID_SE * 4;
#ifdef CONFIG_SPI_FLASH_BAR
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_SE) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_SE) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
else
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_SE_4B) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
qspi_write32(®s->lut[lut_base + 1], 0);
qspi_write32(®s->lut[lut_base + 2], 0);
qspi_write32(®s->lut[lut_base + 3], 0);
/* Erase the whole chip */
lut_base = SEQID_CHIP_ERASE * 4;
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_CHIP_ERASE) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
qspi_write32(®s->lut[lut_base + 1], 0);
qspi_write32(®s->lut[lut_base + 2], 0);
qspi_write32(®s->lut[lut_base + 3], 0);
/* Page Program */
lut_base = SEQID_PP * 4;
#ifdef CONFIG_SPI_FLASH_BAR
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_PP) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_PP) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
else
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_PP_4B) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#ifdef CONFIG_MX6SX
/*
* To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
* So, Use IDATSZ in IPCR to determine the size and here set 0.
*/
qspi_write32(®s->lut[lut_base + 1], OPRND0(0) |
PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
#else
qspi_write32(®s->lut[lut_base + 1], OPRND0(TX_BUFFER_SIZE) |
PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
qspi_write32(®s->lut[lut_base + 2], 0);
qspi_write32(®s->lut[lut_base + 3], 0);
/* READ ID */
lut_base = SEQID_RDID * 4;
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
qspi_write32(®s->lut[lut_base + 1], 0);
qspi_write32(®s->lut[lut_base + 2], 0);
qspi_write32(®s->lut[lut_base + 3], 0);
/* SUB SECTOR 4K ERASE */
lut_base = SEQID_BE_4K * 4;
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#ifdef CONFIG_SPI_FLASH_BAR
/*
* BRRD BRWR RDEAR WREAR are all supported, because it is hard to
* dynamically check whether to set BRRD BRWR or RDEAR WREAR during
* initialization.
*/
lut_base = SEQID_BRRD * 4;
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
lut_base = SEQID_BRWR * 4;
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
lut_base = SEQID_RDEAR * 4;
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
lut_base = SEQID_WREAR * 4;
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
#endif
/* Lock the LUT */
qspi_write32(®s->lutkey, LUT_KEY_VALUE);
qspi_write32(®s->lckcr, QSPI_LCKCR_LOCK);
}
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#if defined(CONFIG_SYS_FSL_QSPI_AHB)
/*
* If we have changed the content of the flash by writing or erasing,
* we need to invalidate the AHB buffer. If we do not do so, we may read out
* the wrong data. The spec tells us reset the AHB domain and Serial Flash
* domain at the same time.
*/
static inline void qspi_ahb_invalid(struct fsl_qspi *q)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)q->reg_base;
u32 reg;
reg = qspi_read32(®s->mcr);
reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
qspi_write32(®s->mcr, reg);
/*
* The minimum delay : 1 AHB + 2 SFCK clocks.
* Delay 1 us is enough.
*/
udelay(1);
reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
qspi_write32(®s->mcr, reg);
}
/* Read out the data from the AHB buffer. */
static inline void qspi_ahb_read(struct fsl_qspi *q, u8 *rxbuf, int len)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)q->reg_base;
u32 mcr_reg;
mcr_reg = qspi_read32(®s->mcr);
qspi_write32(®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
/* Read out the data directly from the AHB buffer. */
memcpy(rxbuf, (u8 *)(q->amba_base + q->sf_addr), len);
qspi_write32(®s->mcr, mcr_reg);
}
static void qspi_enable_ddr_mode(struct fsl_qspi_regs *regs)
{
u32 reg, reg2;
reg = qspi_read32(®s->mcr);
/* Disable the module */
qspi_write32(®s->mcr, reg | QSPI_MCR_MDIS_MASK);
/* Set the Sampling Register for DDR */
reg2 = qspi_read32(®s->smpr);
reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
qspi_write32(®s->smpr, reg2);
/* Enable the module again (enable the DDR too) */
reg |= QSPI_MCR_DDR_EN_MASK;
/* Enable bit 29 for imx6sx */
reg |= (1 << 29);
qspi_write32(®s->mcr, reg);
}
/*
* There are two different ways to read out the data from the flash:
* the "IP Command Read" and the "AHB Command Read".
*
* The IC guy suggests we use the "AHB Command Read" which is faster
* then the "IP Command Read". (What's more is that there is a bug in
* the "IP Command Read" in the Vybrid.)
*
* After we set up the registers for the "AHB Command Read", we can use
* the memcpy to read the data directly. A "missed" access to the buffer
* causes the controller to clear the buffer, and use the sequence pointed
* by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
*/
static void qspi_init_ahb_read(struct fsl_qspi_regs *regs)
{
/* AHB configuration for access buffer 0/1/2 .*/
qspi_write32(®s->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
qspi_write32(®s->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
qspi_write32(®s->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
qspi_write32(®s->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
(0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
/* We only use the buffer3 */
qspi_write32(®s->buf0ind, 0);
qspi_write32(®s->buf1ind, 0);
qspi_write32(®s->buf2ind, 0);
/*
* Set the default lut sequence for AHB Read.
* Parallel mode is disabled.
*/
qspi_write32(®s->bfgencr,
SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
/*Enable DDR Mode*/
qspi_enable_ddr_mode(regs);
}
#endif
void spi_init()
{
/* do nothing */
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct fsl_qspi *qspi;
struct fsl_qspi_regs *regs;
if (bus >= ARRAY_SIZE(spi_bases))
return NULL;
if (cs >= FSL_QSPI_FLASH_NUM)
return NULL;
qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
if (!qspi)
return NULL;
qspi->reg_base = spi_bases[bus];
/*
* According cs, use different amba_base to choose the
* corresponding flash devices.
*
* If not, only one flash device is used even if passing
* different cs using `sf probe`
*/
qspi->amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
qspi->slave.max_write_size = TX_BUFFER_SIZE;
regs = (struct fsl_qspi_regs *)qspi->reg_base;
qspi_write32(®s->mcr, QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK);
smpr_val = qspi_read32(®s->smpr);
qspi_write32(®s->smpr, smpr_val & ~(QSPI_SMPR_FSDLY_MASK |
QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK));
qspi_write32(®s->mcr, QSPI_MCR_RESERVED_MASK);
total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
/*
* Any read access to non-implemented addresses will provide
* undefined results.
*
* In case single die flash devices, TOP_ADDR_MEMA2 and
* TOP_ADDR_MEMB2 should be initialized/programmed to
* TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
* setting the size of these devices to 0. This would ensure
* that the complete memory map is assigned to only one flash device.
*/
qspi_write32(®s->sfa1ad, FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
qspi_write32(®s->sfa2ad, FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
qspi_write32(®s->sfb1ad, total_size | amba_bases[bus]);
qspi_write32(®s->sfb2ad, total_size | amba_bases[bus]);
qspi_set_lut(qspi);
smpr_val = qspi_read32(®s->smpr);
smpr_val &= ~QSPI_SMPR_DDRSMP_MASK;
qspi_write32(®s->smpr, smpr_val);
qspi_write32(®s->mcr, QSPI_MCR_RESERVED_MASK);
#ifdef CONFIG_SYS_FSL_QSPI_AHB
qspi_init_ahb_read(regs);
#endif
return &qspi->slave;
}
void spi_free_slave(struct spi_slave *slave)
{
struct fsl_qspi *qspi = to_qspi_spi(slave);
free(qspi);
}
int spi_claim_bus(struct spi_slave *slave)
{
return 0;
}
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
#ifdef CONFIG_SPI_FLASH_BAR
/* Bank register read/write, EAR register read/write */
static void qspi_op_rdbank(struct fsl_qspi *qspi, u8 *rxbuf, u32 len)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
u32 reg, mcr_reg, data, seqid;
mcr_reg = qspi_read32(®s->mcr);
qspi_write32(®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(®s->rbct, QSPI_RBCT_RXBRD_USEIPS);
qspi_write32(®s->sfar, qspi->amba_base);
if (qspi->cur_seqid == QSPI_CMD_BRRD)
seqid = SEQID_BRRD;
else
seqid = SEQID_RDEAR;
qspi_write32(®s->ipcr, (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
/* Wait previous command complete */
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
while (1) {
reg = qspi_read32(®s->rbsr);
if (reg & QSPI_RBSR_RDBFL_MASK) {
data = qspi_read32(®s->rbdr[0]);
data = qspi_endian_xchg(data);
memcpy(rxbuf, &data, len);
qspi_write32(®s->mcr, qspi_read32(®s->mcr) |
QSPI_MCR_CLR_RXF_MASK);
break;
}
}
qspi_write32(®s->mcr, mcr_reg);
}
#endif
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
static void qspi_op_rdid(struct fsl_qspi *qspi, u32 *rxbuf, u32 len)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
u32 mcr_reg, rbsr_reg, data;
int i, size;
mcr_reg = qspi_read32(®s->mcr);
qspi_write32(®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(®s->rbct, QSPI_RBCT_RXBRD_USEIPS);
qspi_write32(®s->sfar, qspi->amba_base);
qspi_write32(®s->ipcr, (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
i = 0;
size = len;
while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
rbsr_reg = qspi_read32(®s->rbsr);
if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
data = qspi_read32(®s->rbdr[i]);
data = qspi_endian_xchg(data);
memcpy(rxbuf, &data, 4);
rxbuf++;
size -= 4;
i++;
}
}
qspi_write32(®s->mcr, mcr_reg);
}
#ifndef CONFIG_SYS_FSL_QSPI_AHB
/* If not use AHB read, read data from ip interface */
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
static void qspi_op_read(struct fsl_qspi *qspi, u32 *rxbuf, u32 len)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
u32 mcr_reg, data;
int i, size;
u32 to_or_from;
mcr_reg = qspi_read32(®s->mcr);
qspi_write32(®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(®s->rbct, QSPI_RBCT_RXBRD_USEIPS);
to_or_from = qspi->sf_addr + qspi->amba_base;
while (len > 0) {
qspi_write32(®s->sfar, to_or_from);
size = (len > RX_BUFFER_SIZE) ?
RX_BUFFER_SIZE : len;
qspi_write32(®s->ipcr,
(SEQID_FAST_READ << QSPI_IPCR_SEQID_SHIFT) | size);
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
to_or_from += size;
len -= size;
i = 0;
while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
data = qspi_read32(®s->rbdr[i]);
data = qspi_endian_xchg(data);
memcpy(rxbuf, &data, 4);
rxbuf++;
size -= 4;
i++;
}
qspi_write32(®s->mcr, qspi_read32(®s->mcr) |
QSPI_MCR_CLR_RXF_MASK);
}
qspi_write32(®s->mcr, mcr_reg);
}
static void qspi_op_write(struct fsl_qspi *qspi, u8 *txbuf, u32 len)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
u32 mcr_reg, data, reg, status_reg, seqid;
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
int i, size, tx_size;
u32 to_or_from = 0;
mcr_reg = qspi_read32(®s->mcr);
qspi_write32(®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(®s->rbct, QSPI_RBCT_RXBRD_USEIPS);
status_reg = 0;
while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
qspi_write32(®s->ipcr,
(SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
qspi_write32(®s->ipcr,
(SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
reg = qspi_read32(®s->rbsr);
if (reg & QSPI_RBSR_RDBFL_MASK) {
status_reg = qspi_read32(®s->rbdr[0]);
status_reg = qspi_endian_xchg(status_reg);
}
qspi_write32(®s->mcr,
qspi_read32(®s->mcr) | QSPI_MCR_CLR_RXF_MASK);
}
/* Default is page programming */
seqid = SEQID_PP;
#ifdef CONFIG_SPI_FLASH_BAR
if (qspi->cur_seqid == QSPI_CMD_BRWR)
seqid = SEQID_BRWR;
else if (qspi->cur_seqid == QSPI_CMD_WREAR)
seqid = SEQID_WREAR;
#endif
to_or_from = qspi->sf_addr + qspi->amba_base;
qspi_write32(®s->sfar, to_or_from);
tx_size = (len > TX_BUFFER_SIZE) ?
TX_BUFFER_SIZE : len;
memcpy(&data, txbuf, 4);
data = qspi_endian_xchg(data);
size = tx_size % 4;
if (size) {
data = 0;
memcpy(&data, txbuf, size);
data = qspi_endian_xchg(data);
qspi_write32(®s->tbdr, data);
}
qspi_write32(®s->ipcr, (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
qspi_write32(®s->mcr, mcr_reg);
}
static void qspi_op_rdsr(struct fsl_qspi *qspi, u32 *rxbuf)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
u32 mcr_reg, reg, data;
mcr_reg = qspi_read32(®s->mcr);
qspi_write32(®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(®s->rbct, QSPI_RBCT_RXBRD_USEIPS);
qspi_write32(®s->sfar, qspi->amba_base);
qspi_write32(®s->ipcr,
(SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
while (1) {
reg = qspi_read32(®s->rbsr);
if (reg & QSPI_RBSR_RDBFL_MASK) {
data = qspi_read32(®s->rbdr[0]);
data = qspi_endian_xchg(data);
memcpy(rxbuf, &data, 4);
qspi_write32(®s->mcr, qspi_read32(®s->mcr) |
QSPI_MCR_CLR_RXF_MASK);
break;
}
}
qspi_write32(®s->mcr, mcr_reg);
}
static void qspi_op_erase(struct fsl_qspi *qspi)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
u32 mcr_reg;
u32 to_or_from = 0;
mcr_reg = qspi_read32(®s->mcr);
qspi_write32(®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(®s->rbct, QSPI_RBCT_RXBRD_USEIPS);
to_or_from = qspi->sf_addr + qspi->amba_base;
qspi_write32(®s->sfar, to_or_from);
qspi_write32(®s->ipcr,
(SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
if (qspi->cur_seqid == QSPI_CMD_SE) {
qspi_write32(®s->ipcr,
(SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
} else if (qspi->cur_seqid == QSPI_CMD_BE_4K) {
qspi_write32(®s->ipcr,
(SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
}
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
qspi_write32(®s->mcr, mcr_reg);
}
int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct fsl_qspi *qspi = to_qspi_spi(slave);
u32 bytes = DIV_ROUND_UP(bitlen, 8);
if (flags & SPI_XFER_BEGIN) {
qspi->cur_seqid = *(u8 *)dout;
memcpy(&txbuf, dout, 4);
}
qspi->sf_addr = wr_sfaddr;
qspi_op_write(qspi, (u8 *)dout, bytes);
if (qspi->cur_seqid == QSPI_CMD_FAST_READ) {
qspi->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
} else if ((qspi->cur_seqid == QSPI_CMD_SE) ||
(qspi->cur_seqid == QSPI_CMD_BE_4K)) {
qspi->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
} else if (qspi->cur_seqid == QSPI_CMD_PP)
wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
#ifdef CONFIG_SPI_FLASH_BAR
else if ((qspi->cur_seqid == QSPI_CMD_BRWR) ||
(qspi->cur_seqid == QSPI_CMD_WREAR)) {
wr_sfaddr = 0;
if (qspi->cur_seqid == QSPI_CMD_FAST_READ) {
#ifdef CONFIG_SYS_FSL_QSPI_AHB
qspi_ahb_read(qspi, din, bytes);
#else
else if (qspi->cur_seqid == QSPI_CMD_RDID)
else if (qspi->cur_seqid == QSPI_CMD_RDSR)
#ifdef CONFIG_SPI_FLASH_BAR
else if ((qspi->cur_seqid == QSPI_CMD_BRRD) ||
(qspi->cur_seqid == QSPI_CMD_RDEAR)) {
qspi->sf_addr = 0;
qspi_op_rdbank(qspi, din, bytes);
}
#endif
#ifdef CONFIG_SYS_FSL_QSPI_AHB
if ((qspi->cur_seqid == QSPI_CMD_SE) ||
(qspi->cur_seqid == QSPI_CMD_PP) ||
(qspi->cur_seqid == QSPI_CMD_BE_4K) ||
(qspi->cur_seqid == QSPI_CMD_WREAR) ||
(qspi->cur_seqid == QSPI_CMD_BRWR))
qspi_ahb_invalid(qspi);
#endif
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
/* Nothing to do */
}