Skip to content
Snippets Groups Projects
bitops.h 9.87 KiB
Newer Older
  • Learn to ignore specific revisions
  • #ifndef _I386_BITOPS_H
    #define _I386_BITOPS_H
    
    /*
     * Copyright 1992, Linus Torvalds.
     */
    
    
    /*
     * These have to be done with inline assembly: that way the bit-setting
     * is guaranteed to be atomic. All bit operations return 0 if the bit
     * was cleared before the operation and != 0 if it was not.
     *
     * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
     */
    
    
    #include <asm-generic/bitops/fls.h>
    #include <asm-generic/bitops/__fls.h>
    #include <asm-generic/bitops/fls64.h>
    
    
    #ifdef CONFIG_SMP
    #define LOCK_PREFIX "lock ; "
    #else
    #define LOCK_PREFIX ""
    #endif
    
    #define ADDR (*(volatile long *) addr)
    
    /**
     * set_bit - Atomically set a bit in memory
     * @nr: the bit to set
     * @addr: the address to start counting from
     *
     * This function is atomic and may not be reordered.  See __set_bit()
     * if you do not require the atomic guarantees.
     * Note that @nr may be almost arbitrarily large; this function is not
     * restricted to acting on a single-word quantity.
     */
    static __inline__ void set_bit(int nr, volatile void * addr)
    {
    	__asm__ __volatile__( LOCK_PREFIX
    		"btsl %1,%0"
    		:"=m" (ADDR)
    		:"Ir" (nr));
    }
    
    /**
     * __set_bit - Set a bit in memory
     * @nr: the bit to set
     * @addr: the address to start counting from
     *
     * Unlike set_bit(), this function is non-atomic and may be reordered.
     * If it's called on the same region of memory simultaneously, the effect
     * may be that only one operation succeeds.
     */
    static __inline__ void __set_bit(int nr, volatile void * addr)
    {
    	__asm__(
    		"btsl %1,%0"
    		:"=m" (ADDR)
    		:"Ir" (nr));
    }
    
    
    /**
     * clear_bit - Clears a bit in memory
     * @nr: Bit to clear
     * @addr: Address to start counting from
     *
     * clear_bit() is atomic and may not be reordered.  However, it does
     * not contain a memory barrier, so if it is used for locking purposes,
     * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
     * in order to ensure changes are visible on other processors.
     */
    static __inline__ void clear_bit(int nr, volatile void * addr)
    {
    	__asm__ __volatile__( LOCK_PREFIX
    		"btrl %1,%0"
    		:"=m" (ADDR)
    		:"Ir" (nr));
    }
    #define smp_mb__before_clear_bit()	barrier()
    #define smp_mb__after_clear_bit()	barrier()
    
    /**
     * __change_bit - Toggle a bit in memory
     * @nr: the bit to set
     * @addr: the address to start counting from
     *
     * Unlike change_bit(), this function is non-atomic and may be reordered.
     * If it's called on the same region of memory simultaneously, the effect
     * may be that only one operation succeeds.
     */
    static __inline__ void __change_bit(int nr, volatile void * addr)
    {
    	__asm__ __volatile__(
    		"btcl %1,%0"
    		:"=m" (ADDR)
    		:"Ir" (nr));
    }
    
    /**
     * change_bit - Toggle a bit in memory
     * @nr: Bit to clear
     * @addr: Address to start counting from
     *
     * change_bit() is atomic and may not be reordered.
     * Note that @nr may be almost arbitrarily large; this function is not
     * restricted to acting on a single-word quantity.
     */
    static __inline__ void change_bit(int nr, volatile void * addr)
    {
    	__asm__ __volatile__( LOCK_PREFIX
    		"btcl %1,%0"
    		:"=m" (ADDR)
    		:"Ir" (nr));
    }
    
    /**
     * test_and_set_bit - Set a bit and return its old value
     * @nr: Bit to set
     * @addr: Address to count from
     *
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
     * This operation is atomic and cannot be reordered.
    
     * It also implies a memory barrier.
     */
    static __inline__ int test_and_set_bit(int nr, volatile void * addr)
    {
    	int oldbit;
    
    	__asm__ __volatile__( LOCK_PREFIX
    		"btsl %2,%1\n\tsbbl %0,%0"
    		:"=r" (oldbit),"=m" (ADDR)
    		:"Ir" (nr) : "memory");
    	return oldbit;
    }
    
    /**
     * __test_and_set_bit - Set a bit and return its old value
     * @nr: Bit to set
     * @addr: Address to count from
     *
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
     * This operation is non-atomic and can be reordered.
    
     * If two examples of this operation race, one can appear to succeed
     * but actually fail.  You must protect multiple accesses with a lock.
     */
    static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
    {
    	int oldbit;
    
    	__asm__(
    		"btsl %2,%1\n\tsbbl %0,%0"
    		:"=r" (oldbit),"=m" (ADDR)
    		:"Ir" (nr));
    	return oldbit;
    }
    
    /**
     * test_and_clear_bit - Clear a bit and return its old value
     * @nr: Bit to set
     * @addr: Address to count from
     *
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
     * This operation is atomic and cannot be reordered.
    
     * It also implies a memory barrier.
     */
    static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
    {
    	int oldbit;
    
    	__asm__ __volatile__( LOCK_PREFIX
    		"btrl %2,%1\n\tsbbl %0,%0"
    		:"=r" (oldbit),"=m" (ADDR)
    		:"Ir" (nr) : "memory");
    	return oldbit;
    }
    
    /**
     * __test_and_clear_bit - Clear a bit and return its old value
     * @nr: Bit to set
     * @addr: Address to count from
     *
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
     * This operation is non-atomic and can be reordered.
    
     * If two examples of this operation race, one can appear to succeed
     * but actually fail.  You must protect multiple accesses with a lock.
     */
    static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
    {
    	int oldbit;
    
    	__asm__(
    		"btrl %2,%1\n\tsbbl %0,%0"
    		:"=r" (oldbit),"=m" (ADDR)
    		:"Ir" (nr));
    	return oldbit;
    }
    
    /* WARNING: non atomic and it can be reordered! */
    static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
    {
    	int oldbit;
    
    	__asm__ __volatile__(
    		"btcl %2,%1\n\tsbbl %0,%0"
    		:"=r" (oldbit),"=m" (ADDR)
    		:"Ir" (nr) : "memory");
    	return oldbit;
    }
    
    /**
     * test_and_change_bit - Change a bit and return its new value
     * @nr: Bit to set
     * @addr: Address to count from
     *
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
     * This operation is atomic and cannot be reordered.
    
     * It also implies a memory barrier.
     */
    static __inline__ int test_and_change_bit(int nr, volatile void * addr)
    {
    	int oldbit;
    
    	__asm__ __volatile__( LOCK_PREFIX
    		"btcl %2,%1\n\tsbbl %0,%0"
    		:"=r" (oldbit),"=m" (ADDR)
    		:"Ir" (nr) : "memory");
    	return oldbit;
    }
    
    #if 0 /* Fool kernel-doc since it doesn't do macros yet */
    /**
     * test_bit - Determine whether a bit is set
     * @nr: bit number to test
     * @addr: Address to start counting from
     */
    static int test_bit(int nr, const volatile void * addr);
    #endif
    
    static __inline__ int constant_test_bit(int nr, const volatile void * addr)
    {
    	return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
    }
    
    static __inline__ int variable_test_bit(int nr, volatile void * addr)
    {
    	int oldbit;
    
    	__asm__ __volatile__(
    		"btl %2,%1\n\tsbbl %0,%0"
    		:"=r" (oldbit)
    		:"m" (ADDR),"Ir" (nr));
    	return oldbit;
    }
    
    #define test_bit(nr,addr) \
    (__builtin_constant_p(nr) ? \
     constant_test_bit((nr),(addr)) : \
     variable_test_bit((nr),(addr)))
    
    /**
     * find_first_zero_bit - find the first zero bit in a memory region
     * @addr: The address to start the search at
     * @size: The maximum size to search
     *
     * Returns the bit-number of the first zero bit, not the number of the byte
     * containing a bit.
     */
    static __inline__ int find_first_zero_bit(void * addr, unsigned size)
    {
    	int d0, d1, d2;
    	int res;
    
    	if (!size)
    		return 0;
    	/* This looks at memory. Mark it volatile to tell gcc not to move it around */
    	__asm__ __volatile__(
    		"movl $-1,%%eax\n\t"
    		"xorl %%edx,%%edx\n\t"
    		"repe; scasl\n\t"
    		"je 1f\n\t"
    		"xorl -4(%%edi),%%eax\n\t"
    		"subl $4,%%edi\n\t"
    		"bsfl %%eax,%%edx\n"
    		"1:\tsubl %%ebx,%%edi\n\t"
    		"shll $3,%%edi\n\t"
    		"addl %%edi,%%edx"
    		:"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
    		:"1" ((size + 31) >> 5), "2" (addr), "b" (addr));
    	return res;
    }
    
    /**
     * find_next_zero_bit - find the first zero bit in a memory region
     * @addr: The address to base the search on
     * @offset: The bitnumber to start searching at
     * @size: The maximum size to search
     */
    static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
    {
    	unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
    	int set = 0, bit = offset & 31, res;
    
    Wolfgang Denk's avatar
    Wolfgang Denk committed
    
    
    	if (bit) {
    		/*
    		 * Look for zero in first byte
    		 */
    		__asm__("bsfl %1,%0\n\t"
    			"jne 1f\n\t"
    			"movl $32, %0\n"
    			"1:"
    			: "=r" (set)
    			: "r" (~(*p >> bit)));
    		if (set < (32 - bit))
    			return set + offset;
    		set = 32 - bit;
    		p++;
    	}
    	/*
    	 * No zero yet, search remaining full bytes for a zero
    	 */
    	res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
    	return (offset + set + res);
    }
    
    /**
     * ffz - find first zero in word.
     * @word: The word to search
     *
     * Undefined if no zero exists, so code should check against ~0UL first.
     */
    static __inline__ unsigned long ffz(unsigned long word)
    {
    	__asm__("bsfl %1,%0"
    		:"=r" (word)
    		:"r" (~word));
    	return word;
    }
    
    #ifdef __KERNEL__
    
    
    /**
     * __ffs - find first set bit in word
     * @word: The word to search
     *
     * Undefined if no bit exists, so code should check against 0 first.
     */
    static inline unsigned long __ffs(unsigned long word)
    {
    	__asm__("rep; bsf %1,%0"
    		: "=r" (word)
    		: "rm" (word));
    	return word;
    }
    
    
    /**
     * ffs - find first bit set
     * @x: the word to search
     *
     * This is defined the same way as
     * the libc and compiler builtin ffs routines, therefore
     * differs in spirit from the above ffz (man ffs).
     */
    static __inline__ int ffs(int x)
    {
    	int r;
    
    	__asm__("bsfl %1,%0\n\t"
    		"jnz 1f\n\t"
    		"movl $-1,%0\n"
    
    		"1:" : "=r" (r) : "rm" (x));
    
    
    #define PLATFORM_FFS
    
    Graeme Russ's avatar
    Graeme Russ committed
    static inline int __ilog2(unsigned int x)
    {
    	return generic_fls(x) - 1;
    }
    
    
    /**
     * hweightN - returns the hamming weight of a N-bit word
     * @x: the word to weigh
     *
     * The Hamming Weight of a number is the total number of bits set in it.
     */
    
    #define hweight32(x) generic_hweight32(x)
    #define hweight16(x) generic_hweight16(x)
    #define hweight8(x) generic_hweight8(x)
    
    #endif /* __KERNEL__ */
    
    #ifdef __KERNEL__
    
    #define ext2_set_bit                 __test_and_set_bit
    #define ext2_clear_bit               __test_and_clear_bit
    #define ext2_test_bit                test_bit
    #define ext2_find_first_zero_bit     find_first_zero_bit
    #define ext2_find_next_zero_bit      find_next_zero_bit
    
    /* Bitmap functions for the minix filesystem.  */
    #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
    #define minix_set_bit(nr,addr) __set_bit(nr,addr)
    #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
    #define minix_test_bit(nr,addr) test_bit(nr,addr)
    #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
    
    #endif /* __KERNEL__ */
    
    #endif /* _I386_BITOPS_H */