Skip to content
Snippets Groups Projects
README.lsch3 14.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • # Copyright 2014-2015 Freescale Semiconductor
    
    #
    # SPDX-License-Identifier:      GPL-2.0+
    #
    
    Freescale LayerScape with Chassis Generation 3
    
    This architecture supports Freescale ARMv8 SoCs with Chassis generation 3,
    
    DDR Layout
    ============
    Entire DDR region splits into two regions.
     - Region 1 is at address 0x8000_0000 to 0xffff_ffff.
     - Region 2 is at 0x80_8000_0000 to the top of total memory,
       for example 16GB, 0x83_ffff_ffff.
    
    All DDR memory is marked as cache-enabled.
    
    When MC and Debug server is enabled, they carve 512MB away from the high
    end of DDR. For example, if the total DDR is 16GB, it shrinks to 15.5GB
    with MC and Debug server enabled. Linux only sees 15.5GB.
    
    The reserved 512MB layout looks like
    
       +---------------+ <-- top/end of memory
       |    256MB      |  debug server
       +---------------+
       |    256MB      |  MC
       +---------------+
       |     ...       |
    
    MC requires the memory to be aligned with 512MB, so even debug server is
    not enabled, 512MB is reserved, not 256MB.
    
    
    
    (1) A typical layout of various images (including Linux and other firmware images)
       is shown below considering a 32MB NOR flash device present on most
       pre-silicon platforms (simulator and emulator):
    
    	| 	FIT Image	|
    	| (linux + DTB + RFS)	|
    
    	------------------------- ----> 0x0120_0000
    
    	| 	Debug Server FW |
    
    	------------------------- ----> 0x00C0_0000
    
    	------------------------- ----> 0x0070_0000
    	|	MC FW 		|
    	------------------------- ----> 0x006C_0000
    
    	------------------------- ----> 0x0020_0000
    
    	| 	BootLoader + Env|
    
    	------------------------- ----> 0x0000_1000
    	|	PBI 		|
    	------------------------- ----> 0x0000_0080
    	|	RCW 		|
    	------------------------- ----> 0x0000_0000
    
    
    	32-MB NOR flash layout for pre-silicon platforms (simulator and emulator)
    
    (2) A typical layout of various images (including Linux and other firmware images)
    
        is shown below considering a 128MB NOR flash device present on QDS and RDB
    
        boards:
    	----------------------------------------- ----> 0x5_8800_0000 ---
    	|	.. Unused .. (7M)		|			|
    	----------------------------------------- ----> 0x5_8790_0000	|
    	| FIT Image (linux + DTB + RFS)	(40M)	|			|
    	----------------------------------------- ----> 0x5_8510_0000	|
    	|	PHY firmware (2M)	 	|			|
    	----------------------------------------- ----> 0x5_84F0_0000	| 64K
    	|	Debug Server FW (2M)		|			| Alt
    	----------------------------------------- ----> 0x5_84D0_0000	| Bank
    	|	AIOP FW (4M)			|			|
    	----------------------------------------- ----> 0x5_8490_0000 (vbank4)
    	|	MC DPC Blob (1M) 		|			|
    	----------------------------------------- ----> 0x5_8480_0000	|
    	|	MC DPL Blob (1M)		|			|
    	----------------------------------------- ----> 0x5_8470_0000	|
    	| 	MC FW (4M)			|			|
    	----------------------------------------- ----> 0x5_8430_0000	|
    	|	BootLoader Environment (1M) 	|			|
    	----------------------------------------- ----> 0x5_8420_0000	|
    	|	BootLoader (1M)			|			|
    	----------------------------------------- ----> 0x5_8410_0000	|
    	|	RCW and PBI (1M) 		|			|
    	----------------------------------------- ----> 0x5_8400_0000 ---
    	|	.. Unused .. (7M)		|			|
    	----------------------------------------- ----> 0x5_8390_0000	|
    	| FIT Image (linux + DTB + RFS)	(40M)	|			|
    	----------------------------------------- ----> 0x5_8110_0000	|
    	|	PHY firmware (2M)	 	|			|
    	----------------------------------------- ----> 0x5_80F0_0000	| 64K
    	|	Debug Server FW (2M)		|			| Bank
    	----------------------------------------- ----> 0x5_80D0_0000	|
    	|	AIOP FW (4M)			|			|
    	----------------------------------------- ----> 0x5_8090_0000 (vbank0)
    	|	MC DPC Blob (1M) 		|			|
    	----------------------------------------- ----> 0x5_8080_0000	|
    	|	MC DPL Blob (1M)		|			|
    	----------------------------------------- ----> 0x5_8070_0000	|
    	| 	MC FW (4M)			|			|
    	----------------------------------------- ----> 0x5_8030_0000	|
    	|	BootLoader Environment (1M) 	|			|
    	----------------------------------------- ----> 0x5_8020_0000	|
    	|	BootLoader (1M)			|			|
    	----------------------------------------- ----> 0x5_8010_0000	|
    	|	RCW and PBI (1M) 		|			|
    	----------------------------------------- ----> 0x5_8000_0000 ---
    
    
    	128-MB NOR flash layout for QDS and RDB boards
    
    
    Environment Variables
    =====================
    mcboottimeout:	MC boot timeout in milliseconds. If this variable is not defined
    		the value CONFIG_SYS_LS_MC_BOOT_TIMEOUT_MS will be assumed.
    
    mcmemsize:	MC DRAM block size. If this variable is not defined, the value
    		CONFIG_SYS_LS_MC_DRAM_BLOCK_MIN_SIZE will be assumed.
    
    mcinitcmd:	This environment variable is defined to initiate MC and DPL deployment
    		from the location where it is stored(NOR, NAND, SD, SATA, USB)during
    		u-boot booting.If this variable is not defined then MC_BOOT_ENV_VAR
    		will be null and MC will not be booted and DPL will not be applied
    		during U-boot booting.However the MC, DPC and DPL can be applied from
    		console independently.
    		The variable needs to be set from the console once and then on
    		rebooting the parameters set in the varible will automatically be
    		executed. The commmand is demostrated taking an example of mc boot
    		using NOR Flash i.e. MC, DPL, and DPC is stored in the NOR flash:
    
    		cp.b 0xa0000000 0x580300000 $filesize
    		cp.b 0x80000000 0x580800000 $filesize
    		cp.b 0x90000000 0x580700000 $filesize
    
    		setenv mcinitcmd 'fsl_mc start mc 0x580300000 0x580800000'
    
    		If only linux is to be booted then the mcinitcmd environment should be set as
    
    		setenv mcinitcmd 'fsl_mc start mc 0x580300000 0x580800000;fsl_mc apply DPL 0x580700000'
    
    		Here the addresses 0xa0000000, 0x80000000, 0x80000000 are of DDR to where
    		MC binary, DPC binary and DPL binary are stored and 0x580300000, 0x580800000
    		and 0x580700000 are addresses in NOR where these are copied. It is to be
    		noted that these addresses in 'fsl_mc start mc 0x580300000 0x580800000;fsl_mc apply DPL 0x580700000'
    		can be replaced with the addresses of DDR to
    		which these will be copied in case of these binaries being stored in other
    		devices like SATA, USB, NAND, SD etc.
    
    
    Booting from NAND
    -------------------
    Booting from NAND requires two images, RCW and u-boot-with-spl.bin.
    The difference between NAND boot RCW image and NOR boot image is the PBI
    command sequence. Below is one example for PBI commands for QDS which uses
    NAND device with 2KB/page, block size 128KB.
    
    1) CCSR 4-byte write to 0x00e00404, data=0x00000000
    2) CCSR 4-byte write to 0x00e00400, data=0x1800a000
    The above two commands set bootloc register to 0x00000000_1800a000 where
    the u-boot code will be running in OCRAM.
    
    3) Block Copy: SRC=0x0107, SRC_ADDR=0x00020000, DEST_ADDR=0x1800a000,
    BLOCK_SIZE=0x00014000
    This command copies u-boot image from NAND device into OCRAM. The values need
    to adjust accordingly.
    
    SRC		should match the cfg_rcw_src, the reset config pins. It depends
    		on the NAND device. See reference manual for cfg_rcw_src.
    SRC_ADDR	is the offset of u-boot-with-spl.bin image in NAND device. In
    		the example above, 128KB. For easy maintenance, we put it at
    		the beginning of next block from RCW.
    DEST_ADDR	is fixed at 0x1800a000, matching bootloc set above.
    BLOCK_SIZE	is the size to be copied by PBI.
    
    RCW image should be written to the beginning of NAND device. Example of using
    u-boot command
    
    nand write <rcw image in memory> 0 <size of rcw image>
    
    To form the NAND image, build u-boot with NAND config, for example,
    
    ls2080aqds_nand_defconfig. The image needed is u-boot-with-spl.bin.
    
    The u-boot image should be written to match SRC_ADDR, in above example 0x20000.
    
    nand write <u-boot image in memory> 200000 <size of u-boot image>
    
    With these two images in NAND device, the board can boot from NAND.
    
    
    Another example for RDB boards,
    
    1) CCSR 4-byte write to 0x00e00404, data=0x00000000
    2) CCSR 4-byte write to 0x00e00400, data=0x1800a000
    3) Block Copy: SRC=0x0119, SRC_ADDR=0x00080000, DEST_ADDR=0x1800a000,
    BLOCK_SIZE=0x00014000
    
    nand write <rcw image in memory> 0 <size of rcw image>
    nand write <u-boot image in memory> 80000 <size of u-boot image>
    
    Notice the difference from QDS is SRC, SRC_ADDR and the offset of u-boot image
    to match board NAND device with 4KB/page, block size 512KB.
    
    
    MMU Translation Tables
    ======================
    
    (1) Early MMU Tables:
    
         Level 0                   Level 1                   Level 2
    ------------------        ------------------        ------------------
    | 0x00_0000_0000 | -----> | 0x00_0000_0000 | -----> | 0x00_0000_0000 |
    ------------------        ------------------        ------------------
    | 0x80_0000_0000 | --|    | 0x00_4000_0000 |        | 0x00_0020_0000 |
    ------------------   |    ------------------        ------------------
    |    invalid     |   |    | 0x00_8000_0000 |        | 0x00_0040_0000 |
    ------------------   |    ------------------        ------------------
                         |    | 0x00_c000_0000 |        | 0x00_0060_0000 |
                         |    ------------------        ------------------
                         |    | 0x01_0000_0000 |        | 0x00_0080_0000 |
                         |    ------------------        ------------------
                         |            ...                      ...
                         |    ------------------
                         |    | 0x05_8000_0000 |  --|
                         |    ------------------    |
                         |    | 0x05_c000_0000 |    |
                         |    ------------------    |
                         |            ...           |
                         |    ------------------    |   ------------------
                         |--> | 0x80_0000_0000 |    |-> | 0x00_3000_0000 |
                              ------------------        ------------------
                              | 0x80_4000_0000 |        | 0x00_3020_0000 |
                              ------------------        ------------------
                              | 0x80_8000_0000 |        | 0x00_3040_0000 |
                              ------------------        ------------------
                              | 0x80_c000_0000 |        | 0x00_3060_0000 |
                              ------------------        ------------------
                              | 0x81_0000_0000 |        | 0x00_3080_0000 |
                              ------------------        ------------------
    			         ...	                   ...
    
    (2) Final MMU Tables:
    
         Level 0                   Level 1                   Level 2
    ------------------        ------------------        ------------------
    | 0x00_0000_0000 | -----> | 0x00_0000_0000 | -----> | 0x00_0000_0000 |
    ------------------        ------------------        ------------------
    | 0x80_0000_0000 | --|    | 0x00_4000_0000 |        | 0x00_0020_0000 |
    ------------------   |    ------------------        ------------------
    |    invalid     |   |    | 0x00_8000_0000 |        | 0x00_0040_0000 |
    ------------------   |    ------------------        ------------------
                         |    | 0x00_c000_0000 |        | 0x00_0060_0000 |
                         |    ------------------        ------------------
                         |    | 0x01_0000_0000 |        | 0x00_0080_0000 |
                         |    ------------------        ------------------
                         |            ...                      ...
                         |    ------------------
                         |    | 0x08_0000_0000 | --|
                         |    ------------------   |
                         |    | 0x08_4000_0000 |   |
                         |    ------------------   |
                         |            ...          |
                         |    ------------------   |    ------------------
                         |--> | 0x80_0000_0000 |   |--> | 0x08_0000_0000 |
                              ------------------        ------------------
                              | 0x80_4000_0000 |        | 0x08_0020_0000 |
                              ------------------        ------------------
                              | 0x80_8000_0000 |        | 0x08_0040_0000 |
                              ------------------        ------------------
                              | 0x80_c000_0000 |        | 0x08_0060_0000 |
                              ------------------        ------------------
                              | 0x81_0000_0000 |        | 0x08_0080_0000 |
                              ------------------        ------------------
    			         ...	                   ...
    
    
    
    DPAA2 commands to manage Management Complex (MC)
    ------------------------------------------------
    DPAA2 commands has been introduced to manage Management Complex
    (MC). These commands are used to start mc, aiop and apply DPL
    from u-boot command prompt.
    
    Please note Management complex Firmware(MC), DPL and DPC are no
    more deployed during u-boot boot-sequence.
    
    Commands:
    a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
    b) fsl_mc apply DPL <DPL_addr> - Apply DPL file
    c) fsl_mc start aiop <FW_addr> - Start AIOP
    
    How to use commands :-
    1. Command sequence for u-boot ethernet:
       a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
       b) DPMAC net-devices are now available for use
    
       Example-
    	Assumption: MC firmware, DPL and DPC dtb is already programmed
    	on NOR flash.
    
    	=> fsl_mc start mc 580300000 580800000
    	=> setenv ethact DPMAC1@xgmii
    	=> ping $serverip
    
    2. Command sequence for Linux boot:
       a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
       b) fsl_mc apply DPL <DPL_addr> - Apply DPL file
       c) No DPMAC net-devices are available for use in u-boot
       d) boot Linux
    
       Example-
    	Assumption: MC firmware, DPL and DPC dtb is already programmed
    	on NOR flash.
    
    	=> fsl_mc start mc 580300000 580800000
    	=> setenv ethact DPMAC1@xgmii
    	=> tftp a0000000 kernel.itb
    	=> fsl_mc apply dpl 580700000
    	=> bootm a0000000
    
    3. Command sequence for AIOP boot:
       a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
       b) fsl_mc start aiop <FW_addr> - Start AIOP
       c) fsl_mc apply DPL <DPL_addr> - Apply DPL file
       d) No DPMAC net-devices are availabe for use in u-boot
      Please note actual AIOP start will happen during DPL parsing of
      Management complex
    
      Example-
    	Assumption: MC firmware, DPL, DPC dtb and AIOP firmware is already
    	programmed on NOR flash.
    
    	=> fsl_mc start mc 580300000 580800000
    	=> fsl_mc start aiop 0x580900000
    	=> setenv ethact DPMAC1@xgmii
    	=> fsl_mc apply dpl 580700000
    
    
    Errata A009635
    ---------------
    If the core runs at higher than x3 speed of the platform, there is
    possiblity about sev instruction to getting missed by other cores.
    This is because of SoC Run Control block may not able to sample
    the EVENTI(Sev) signals.
    
    Workaround: Configure Run Control and EPU to periodically send out EVENTI signals to
    wake up A57 cores
    
    Errata workaround uses Env variable "a009635_interval_val". It uses decimal
    value.
    - Default value of env variable is platform clock (MHz)
    
    - User can modify default value by updating the env variable
      setenv a009635_interval_val 600; saveenv;
      It configure platform clock as 600 MHz
    
    - Env variable as 0 signifies no workaround