Newer
Older
/*
* ifdtool - Manage Intel Firmware Descriptor information
*
* Copyright 2014 Google, Inc
*
* SPDX-License-Identifier: GPL-2.0
*
* From Coreboot project, but it got a serious code clean-up
* and a few new features
*/
#include <assert.h>
#include <fcntl.h>
#include <getopt.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "ifdtool.h"
#undef DEBUG
#ifdef DEBUG
#define debug(fmt, args...) printf(fmt, ##args)
#else
#define debug(fmt, args...)
#endif
#define FD_SIGNATURE 0x0FF0A55A
#define FLREG_BASE(reg) ((reg & 0x00000fff) << 12);
#define FLREG_LIMIT(reg) (((reg & 0x0fff0000) >> 4) | 0xfff);
enum input_file_type_t {
IF_normal,
};
struct input_file {
char *fname;
unsigned int addr;
enum input_file_type_t type;
};
/**
* find_fd() - Find the flash description in the ROM image
*
* @image: Pointer to image
* @size: Size of image in bytes
* @return pointer to structure, or NULL if not found
*/
static struct fdbar_t *find_fd(char *image, int size)
{
uint32_t *ptr, *end;
/* Scan for FD signature */
for (ptr = (uint32_t *)image, end = ptr + size / 4; ptr < end; ptr++) {
if (*ptr == FD_SIGNATURE)
break;
}
if (ptr == end) {
printf("No Flash Descriptor found in this image\n");
return NULL;
}
debug("Found Flash Descriptor signature at 0x%08lx\n",
(char *)ptr - image);
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
return (struct fdbar_t *)ptr;
}
/**
* get_region() - Get information about the selected region
*
* @frba: Flash region list
* @region_type: Type of region (0..MAX_REGIONS-1)
* @region: Region information is written here
* @return 0 if OK, else -ve
*/
static int get_region(struct frba_t *frba, int region_type,
struct region_t *region)
{
if (region_type >= MAX_REGIONS) {
fprintf(stderr, "Invalid region type.\n");
return -1;
}
region->base = FLREG_BASE(frba->flreg[region_type]);
region->limit = FLREG_LIMIT(frba->flreg[region_type]);
region->size = region->limit - region->base + 1;
return 0;
}
static const char *region_name(int region_type)
{
static const char *const regions[] = {
"Flash Descriptor",
"BIOS",
"Intel ME",
"GbE",
"Platform Data"
};
assert(region_type < MAX_REGIONS);
return regions[region_type];
}
static const char *region_filename(int region_type)
{
static const char *const region_filenames[] = {
"flashregion_0_flashdescriptor.bin",
"flashregion_1_bios.bin",
"flashregion_2_intel_me.bin",
"flashregion_3_gbe.bin",
"flashregion_4_platform_data.bin"
};
assert(region_type < MAX_REGIONS);
return region_filenames[region_type];
}
static int dump_region(int num, struct frba_t *frba)
{
struct region_t region;
int ret;
ret = get_region(frba, num, ®ion);
if (ret)
return ret;
printf(" Flash Region %d (%s): %08x - %08x %s\n",
num, region_name(num), region.base, region.limit,
region.size < 1 ? "(unused)" : "");
return ret;
}
static void dump_frba(struct frba_t *frba)
{
int i;
printf("Found Region Section\n");
for (i = 0; i < MAX_REGIONS; i++) {
printf("FLREG%d: 0x%08x\n", i, frba->flreg[i]);
dump_region(i, frba);
}
}
static void decode_spi_frequency(unsigned int freq)
{
switch (freq) {
case SPI_FREQUENCY_20MHZ:
printf("20MHz");
break;
case SPI_FREQUENCY_33MHZ:
printf("33MHz");
break;
case SPI_FREQUENCY_50MHZ:
printf("50MHz");
break;
default:
printf("unknown<%x>MHz", freq);
}
}
static void decode_component_density(unsigned int density)
{
switch (density) {
case COMPONENT_DENSITY_512KB:
printf("512KiB");
break;
case COMPONENT_DENSITY_1MB:
printf("1MiB");
break;
case COMPONENT_DENSITY_2MB:
printf("2MiB");
break;
case COMPONENT_DENSITY_4MB:
printf("4MiB");
break;
case COMPONENT_DENSITY_8MB:
printf("8MiB");
break;
case COMPONENT_DENSITY_16MB:
printf("16MiB");
break;
default:
printf("unknown<%x>MiB", density);
}
}
static void dump_fcba(struct fcba_t *fcba)
{
printf("\nFound Component Section\n");
printf("FLCOMP 0x%08x\n", fcba->flcomp);
printf(" Dual Output Fast Read Support: %ssupported\n",
(fcba->flcomp & (1 << 30)) ? "" : "not ");
printf(" Read ID/Read Status Clock Frequency: ");
decode_spi_frequency((fcba->flcomp >> 27) & 7);
printf("\n Write/Erase Clock Frequency: ");
decode_spi_frequency((fcba->flcomp >> 24) & 7);
printf("\n Fast Read Clock Frequency: ");
decode_spi_frequency((fcba->flcomp >> 21) & 7);
printf("\n Fast Read Support: %ssupported",
(fcba->flcomp & (1 << 20)) ? "" : "not ");
printf("\n Read Clock Frequency: ");
decode_spi_frequency((fcba->flcomp >> 17) & 7);
printf("\n Component 2 Density: ");
decode_component_density((fcba->flcomp >> 3) & 7);
printf("\n Component 1 Density: ");
decode_component_density(fcba->flcomp & 7);
printf("\n");
printf("FLILL 0x%08x\n", fcba->flill);
printf(" Invalid Instruction 3: 0x%02x\n",
(fcba->flill >> 24) & 0xff);
printf(" Invalid Instruction 2: 0x%02x\n",
(fcba->flill >> 16) & 0xff);
printf(" Invalid Instruction 1: 0x%02x\n",
(fcba->flill >> 8) & 0xff);
printf(" Invalid Instruction 0: 0x%02x\n",
fcba->flill & 0xff);
printf("FLPB 0x%08x\n", fcba->flpb);
printf(" Flash Partition Boundary Address: 0x%06x\n\n",
(fcba->flpb & 0xfff) << 12);
}
static void dump_fpsba(struct fpsba_t *fpsba)
{
int i;
printf("Found PCH Strap Section\n");
for (i = 0; i < MAX_STRAPS; i++)
printf("PCHSTRP%-2d: 0x%08x\n", i, fpsba->pchstrp[i]);
}
static const char *get_enabled(int flag)
{
return flag ? "enabled" : "disabled";
}
static void decode_flmstr(uint32_t flmstr)
{
printf(" Platform Data Region Write Access: %s\n",
get_enabled(flmstr & (1 << 28)));
printf(" GbE Region Write Access: %s\n",
get_enabled(flmstr & (1 << 27)));
printf(" Intel ME Region Write Access: %s\n",
get_enabled(flmstr & (1 << 26)));
printf(" Host CPU/BIOS Region Write Access: %s\n",
get_enabled(flmstr & (1 << 25)));
printf(" Flash Descriptor Write Access: %s\n",
get_enabled(flmstr & (1 << 24)));
printf(" Platform Data Region Read Access: %s\n",
get_enabled(flmstr & (1 << 20)));
printf(" GbE Region Read Access: %s\n",
get_enabled(flmstr & (1 << 19)));
printf(" Intel ME Region Read Access: %s\n",
get_enabled(flmstr & (1 << 18)));
printf(" Host CPU/BIOS Region Read Access: %s\n",
get_enabled(flmstr & (1 << 17)));
printf(" Flash Descriptor Read Access: %s\n",
get_enabled(flmstr & (1 << 16)));
printf(" Requester ID: 0x%04x\n\n",
flmstr & 0xffff);
}
static void dump_fmba(struct fmba_t *fmba)
{
printf("Found Master Section\n");
printf("FLMSTR1: 0x%08x (Host CPU/BIOS)\n", fmba->flmstr1);
decode_flmstr(fmba->flmstr1);
printf("FLMSTR2: 0x%08x (Intel ME)\n", fmba->flmstr2);
decode_flmstr(fmba->flmstr2);
printf("FLMSTR3: 0x%08x (GbE)\n", fmba->flmstr3);
decode_flmstr(fmba->flmstr3);
}
static void dump_fmsba(struct fmsba_t *fmsba)
{
int i;
printf("Found Processor Strap Section\n");
for (i = 0; i < 4; i++)
printf("????: 0x%08x\n", fmsba->data[0]);
}
static void dump_jid(uint32_t jid)
{
printf(" SPI Component Device ID 1: 0x%02x\n",
(jid >> 16) & 0xff);
printf(" SPI Component Device ID 0: 0x%02x\n",
(jid >> 8) & 0xff);
printf(" SPI Component Vendor ID: 0x%02x\n",
jid & 0xff);
}
static void dump_vscc(uint32_t vscc)
{
printf(" Lower Erase Opcode: 0x%02x\n",
vscc >> 24);
printf(" Lower Write Enable on Write Status: 0x%02x\n",
vscc & (1 << 20) ? 0x06 : 0x50);
printf(" Lower Write Status Required: %s\n",
vscc & (1 << 19) ? "Yes" : "No");
printf(" Lower Write Granularity: %d bytes\n",
vscc & (1 << 18) ? 64 : 1);
printf(" Lower Block / Sector Erase Size: ");
switch ((vscc >> 16) & 0x3) {
case 0:
printf("256 Byte\n");
break;
case 1:
printf("4KB\n");
break;
case 2:
printf("8KB\n");
break;
case 3:
printf("64KB\n");
break;
}
printf(" Upper Erase Opcode: 0x%02x\n",
(vscc >> 8) & 0xff);
printf(" Upper Write Enable on Write Status: 0x%02x\n",
vscc & (1 << 4) ? 0x06 : 0x50);
printf(" Upper Write Status Required: %s\n",
vscc & (1 << 3) ? "Yes" : "No");
printf(" Upper Write Granularity: %d bytes\n",
vscc & (1 << 2) ? 64 : 1);
printf(" Upper Block / Sector Erase Size: ");
switch (vscc & 0x3) {
case 0:
printf("256 Byte\n");
break;
case 1:
printf("4KB\n");
break;
case 2:
printf("8KB\n");
break;
case 3:
printf("64KB\n");
break;
}
}
static void dump_vtba(struct vtba_t *vtba, int vtl)
{
int i;
int num = (vtl >> 1) < 8 ? (vtl >> 1) : 8;
printf("ME VSCC table:\n");
for (i = 0; i < num; i++) {
printf(" JID%d: 0x%08x\n", i, vtba->entry[i].jid);
dump_jid(vtba->entry[i].jid);
printf(" VSCC%d: 0x%08x\n", i, vtba->entry[i].vscc);
dump_vscc(vtba->entry[i].vscc);
}
printf("\n");
}
static void dump_oem(uint8_t *oem)
{
int i, j;
printf("OEM Section:\n");
for (i = 0; i < 4; i++) {
printf("%02x:", i << 4);
for (j = 0; j < 16; j++)
printf(" %02x", oem[(i<<4)+j]);
printf("\n");
}
printf("\n");
}
/**
* dump_fd() - Display a dump of the full flash description
*
* @image: Pointer to image
* @size: Size of image in bytes
* @return 0 if OK, -1 on error
*/
static int dump_fd(char *image, int size)
{
struct fdbar_t *fdb = find_fd(image, size);
if (!fdb)
return -1;
printf("FLMAP0: 0x%08x\n", fdb->flmap0);
printf(" NR: %d\n", (fdb->flmap0 >> 24) & 7);
printf(" FRBA: 0x%x\n", ((fdb->flmap0 >> 16) & 0xff) << 4);
printf(" NC: %d\n", ((fdb->flmap0 >> 8) & 3) + 1);
printf(" FCBA: 0x%x\n", ((fdb->flmap0) & 0xff) << 4);
printf("FLMAP1: 0x%08x\n", fdb->flmap1);
printf(" ISL: 0x%02x\n", (fdb->flmap1 >> 24) & 0xff);
printf(" FPSBA: 0x%x\n", ((fdb->flmap1 >> 16) & 0xff) << 4);
printf(" NM: %d\n", (fdb->flmap1 >> 8) & 3);
printf(" FMBA: 0x%x\n", ((fdb->flmap1) & 0xff) << 4);
printf("FLMAP2: 0x%08x\n", fdb->flmap2);
printf(" PSL: 0x%04x\n", (fdb->flmap2 >> 8) & 0xffff);
printf(" FMSBA: 0x%x\n", ((fdb->flmap2) & 0xff) << 4);
printf("FLUMAP1: 0x%08x\n", fdb->flumap1);
printf(" Intel ME VSCC Table Length (VTL): %d\n",
(fdb->flumap1 >> 8) & 0xff);
printf(" Intel ME VSCC Table Base Address (VTBA): 0x%06x\n\n",
(fdb->flumap1 & 0xff) << 4);
dump_vtba((struct vtba_t *)
(image + ((fdb->flumap1 & 0xff) << 4)),
(fdb->flumap1 >> 8) & 0xff);
dump_oem((uint8_t *)image + 0xf00);
dump_frba((struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff)
<< 4)));
dump_fcba((struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4)));
dump_fpsba((struct fpsba_t *)
(image + (((fdb->flmap1 >> 16) & 0xff) << 4)));
dump_fmba((struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4)));
dump_fmsba((struct fmsba_t *)(image + (((fdb->flmap2) & 0xff) << 4)));
return 0;
}
/**
* write_regions() - Write each region from an image to its own file
*
* The filename to use in each case is fixed - see region_filename()
*
* @image: Pointer to image
* @size: Size of image in bytes
* @return 0 if OK, -ve on error
*/
static int write_regions(char *image, int size)
{
struct fdbar_t *fdb;
struct frba_t *frba;
int ret = 0;
int i;
fdb = find_fd(image, size);
if (!fdb)
return -1;
frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4));
for (i = 0; i < MAX_REGIONS; i++) {
struct region_t region;
int region_fd;
ret = get_region(frba, i, ®ion);
if (ret)
return ret;
dump_region(i, frba);
if (region.size <= 0)
continue;
region_fd = open(region_filename(i),
O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR |
S_IWUSR | S_IRGRP | S_IROTH);
if (write(region_fd, image + region.base, region.size) !=
region.size) {
perror("Error while writing");
ret = -1;
}
close(region_fd);
}
return ret;
}
static int perror_fname(const char *fmt, const char *fname)
{
char msg[strlen(fmt) + strlen(fname) + 1];
sprintf(msg, fmt, fname);
perror(msg);
return -1;
}
/**
* write_image() - Write the image to a file
*
* @filename: Filename to use for the image
* @image: Pointer to image
* @size: Size of image in bytes
* @return 0 if OK, -ve on error
*/
static int write_image(char *filename, char *image, int size)
{
int new_fd;
debug("Writing new image to %s\n", filename);
new_fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR |
S_IWUSR | S_IRGRP | S_IROTH);
if (new_fd < 0)
return perror_fname("Could not open file '%s'", filename);
if (write(new_fd, image, size) != size)
return perror_fname("Could not write file '%s'", filename);
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
close(new_fd);
return 0;
}
/**
* set_spi_frequency() - Set the SPI frequency to use when booting
*
* Several frequencies are supported, some of which work with fast devices.
* For SPI emulators, the slowest (SPI_FREQUENCY_20MHZ) is often used. The
* Intel boot system uses this information somehow on boot.
*
* The image is updated with the supplied value
*
* @image: Pointer to image
* @size: Size of image in bytes
* @freq: SPI frequency to use
*/
static void set_spi_frequency(char *image, int size, enum spi_frequency freq)
{
struct fdbar_t *fdb = find_fd(image, size);
struct fcba_t *fcba;
fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4));
/* clear bits 21-29 */
fcba->flcomp &= ~0x3fe00000;
/* Read ID and Read Status Clock Frequency */
fcba->flcomp |= freq << 27;
/* Write and Erase Clock Frequency */
fcba->flcomp |= freq << 24;
/* Fast Read Clock Frequency */
fcba->flcomp |= freq << 21;
}
/**
* set_em100_mode() - Set a SPI frequency that will work with Dediprog EM100
*
* @image: Pointer to image
* @size: Size of image in bytes
*/
static void set_em100_mode(char *image, int size)
{
struct fdbar_t *fdb = find_fd(image, size);
struct fcba_t *fcba;
fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4));
fcba->flcomp &= ~(1 << 30);
set_spi_frequency(image, size, SPI_FREQUENCY_20MHZ);
}
/**
* lock_descriptor() - Lock the NE descriptor so it cannot be updated
*
* @image: Pointer to image
* @size: Size of image in bytes
*/
static void lock_descriptor(char *image, int size)
{
struct fdbar_t *fdb = find_fd(image, size);
struct fmba_t *fmba;
/*
* TODO: Dynamically take Platform Data Region and GbE Region into
* account.
*/
fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4));
fmba->flmstr1 = 0x0a0b0000;
fmba->flmstr2 = 0x0c0d0000;
fmba->flmstr3 = 0x08080118;
}
/**
* unlock_descriptor() - Lock the NE descriptor so it can be updated
*
* @image: Pointer to image
* @size: Size of image in bytes
*/
static void unlock_descriptor(char *image, int size)
{
struct fdbar_t *fdb = find_fd(image, size);
struct fmba_t *fmba;
fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4));
fmba->flmstr1 = 0xffff0000;
fmba->flmstr2 = 0xffff0000;
fmba->flmstr3 = 0x08080118;
}
/**
* open_for_read() - Open a file for reading
*
* @fname: Filename to open
* @sizep: Returns file size in bytes
* @return 0 if OK, -1 on error
*/
int open_for_read(const char *fname, int *sizep)
{
int fd = open(fname, O_RDONLY);
struct stat buf;
if (fd == -1)
return perror_fname("Could not open file '%s'", fname);
if (fstat(fd, &buf) == -1)
return perror_fname("Could not stat file '%s'", fname);
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
*sizep = buf.st_size;
debug("File %s is %d bytes\n", fname, *sizep);
return fd;
}
/**
* inject_region() - Add a file to an image region
*
* This puts a file into a particular region of the flash. Several pre-defined
* regions are used.
*
* @image: Pointer to image
* @size: Size of image in bytes
* @region_type: Region where the file should be added
* @region_fname: Filename to add to the image
* @return 0 if OK, -ve on error
*/
int inject_region(char *image, int size, int region_type, char *region_fname)
{
struct fdbar_t *fdb = find_fd(image, size);
struct region_t region;
struct frba_t *frba;
int region_size;
int offset = 0;
int region_fd;
int ret;
if (!fdb)
exit(EXIT_FAILURE);
frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4));
ret = get_region(frba, region_type, ®ion);
if (ret)
return -1;
if (region.size <= 0xfff) {
fprintf(stderr, "Region %s is disabled in target. Not injecting.\n",
region_name(region_type));
return -1;
}
region_fd = open_for_read(region_fname, ®ion_size);
if (region_fd < 0)
return region_fd;
if ((region_size > region.size) ||
((region_type != 1) && (region_size > region.size))) {
fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x) bytes. Not injecting.\n",
region_name(region_type), region.size,
region.size, region_size, region_size);
return -1;
}
if ((region_type == 1) && (region_size < region.size)) {
fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x) bytes. Padding before injecting.\n",
region_name(region_type), region.size,
region.size, region_size, region_size);
offset = region.size - region_size;
memset(image + region.base, 0xff, offset);
}
if (size < region.base + offset + region_size) {
fprintf(stderr, "Output file is too small. (%d < %d)\n",
size, region.base + offset + region_size);
return -1;
}
if (read(region_fd, image + region.base + offset, region_size)
!= region_size) {
perror("Could not read file");
return -1;
}
close(region_fd);
debug("Adding %s as the %s section\n", region_fname,
region_name(region_type));
return 0;
}
/**
* write_data() - Write some raw data into a region
*
* This puts a file into a particular place in the flash, ignoring the
* regions. Be careful not to overwrite something important.
*
* @image: Pointer to image
* @size: Size of image in bytes
* @addr: x86 ROM address to put file. The ROM ends at
* 0xffffffff so use an address relative to that. For an
* 8MB ROM the start address is 0xfff80000.
* @write_fname: Filename to add to the image
* @offset_uboot_top: Offset of the top of U-Boot
* @offset_uboot_start: Offset of the start of U-Boot
* @return number of bytes written if OK, -ve on error
*/
static int write_data(char *image, int size, unsigned int addr,
const char *write_fname, int offset_uboot_top,
int offset_uboot_start)
{
int write_fd, write_size;
int offset;
write_fd = open_for_read(write_fname, &write_size);
if (write_fd < 0)
return write_fd;
offset = (uint32_t)(addr + size);
if (offset_uboot_top) {
if (offset_uboot_start < offset &&
offset_uboot_top >= offset) {
fprintf(stderr, "U-Boot image overlaps with region '%s'\n",
write_fname);
fprintf(stderr,
"U-Boot finishes at offset %x, file starts at %x\n",
offset_uboot_top, offset);
return -EXDEV;
}
if (offset_uboot_start > offset &&
offset_uboot_start <= offset + write_size) {
fprintf(stderr, "U-Boot image overlaps with region '%s'\n",
write_fname);
fprintf(stderr,
"U-Boot starts at offset %x, file finishes at %x\n",
offset_uboot_start, offset + write_size);
return -EXDEV;
}
debug("Writing %s to offset %#x\n", write_fname, offset);
if (offset < 0 || offset + write_size > size) {
fprintf(stderr, "Output file is too small. (%d < %d)\n",
size, offset + write_size);
return -1;
}
if (read(write_fd, image + offset, write_size) != write_size) {
perror("Could not read file");
return -1;
}
close(write_fd);
return write_size;
}
static int scan_ucode(const void *blob, char *ucode_base, int *countp,
const char **datap, int *data_sizep)
{
const char *data = NULL;
int node, count;
int data_size;
char *ucode;
for (node = 0, count = 0, ucode = ucode_base; node >= 0; count++) {
node = fdt_node_offset_by_compatible(blob, node,
"intel,microcode");
if (node < 0)
break;
data = fdt_getprop(blob, node, "data", &data_size);
if (!data) {
debug("Missing microcode data in FDT '%s': %s\n",
fdt_get_name(blob, node, NULL),
fdt_strerror(data_size));
return -ENOENT;
}
if (ucode_base)
memcpy(ucode, data, data_size);
ucode += data_size;
}
if (countp)
*countp = count;
if (datap)
*datap = data;
if (data_sizep)
*data_sizep = data_size;
return ucode - ucode_base;
}
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
static int remove_ucode(char *blob)
{
int node, count;
int ret;
/* Keep going until we find no more microcode to remove */
do {
for (node = 0, count = 0; node >= 0;) {
int ret;
node = fdt_node_offset_by_compatible(blob, node,
"intel,microcode");
if (node < 0)
break;
ret = fdt_delprop(blob, node, "data");
/*
* -FDT_ERR_NOTFOUND means we already removed the
* data for this one, so we just continue.
* 0 means we did remove it, so offsets may have
* changed and we need to restart our scan.
* Anything else indicates an error we should report.
*/
if (ret == -FDT_ERR_NOTFOUND)
continue;
else if (!ret)
node = 0;
else
return ret;
}
} while (count);
/* Pack down to remove excees space */
ret = fdt_pack(blob);
if (ret)
return ret;
return fdt_totalsize(blob);
}
static int write_ucode(char *image, int size, struct input_file *fdt,
int fdt_size, unsigned int ucode_ptr,
int collate_ucode)
{
const char *data = NULL;
const void *blob;
char *ucode_base;
uint32_t *ptr;
int ucode_size;
int data_size;
int offset;
int count;
blob = (void *)image + (uint32_t)(fdt->addr + size);
debug("DTB at %lx\n", (char *)blob - image);
/* Find out about the micrcode we have */
ucode_size = scan_ucode(blob, NULL, &count, &data, &data_size);
if (ucode_size < 0)
return ucode_size;
if (!count) {
debug("No microcode found in FDT\n");
return -ENOENT;
}
if (count > 1 && !collate_ucode) {
fprintf(stderr,
"Cannot handle multiple microcode blocks - please use -C flag to collate them\n");
return -EMLINK;
}
* Collect the microcode into a buffer, remove it from the device
* tree and place it immediately above the (now smaller) device tree.
*/
if (collate_ucode && count > 1) {
ucode_buf = malloc(ucode_size);
if (!ucode_buf) {
fprintf(stderr,
"Out of memory for microcode (%d bytes)\n",
ucode_size);
return -ENOMEM;
}
ret = scan_ucode(blob, ucode_buf, NULL, NULL, NULL);
if (ret < 0)
return ret;
/* Remove the microcode from the device tree */
ret = remove_ucode((char *)blob);
if (ret < 0) {
debug("Could not remove FDT microcode: %s\n",
fdt_strerror(ret));
return -EINVAL;
}
debug("Collated %d microcode block(s)\n", count);
debug("Device tree reduced from %x to %x bytes\n",
fdt_size, ret);
fdt_size = ret;
/*
* Place microcode area immediately above the FDT, aligned
* to a 16-byte boundary.
*/
ucode_base = (char *)(((unsigned long)blob + fdt_size + 15) &
~15);
data = ucode_base;
data_size = ucode_size;
memcpy(ucode_base, ucode_buf, ucode_size);
free(ucode_buf);
}
offset = (uint32_t)(ucode_ptr + size);
ptr = (void *)image + offset;
ptr[0] = (data - image) - size;
ptr[1] = data_size;
debug("Wrote microcode pointer at %x: addr=%x, size=%x\n", ucode_ptr,
ptr[0], ptr[1]);
return (collate_ucode ? data + data_size : (char *)blob + fdt_size) -
image;
/**
* write_uboot() - Write U-Boot, device tree and microcode pointer
*
* This writes U-Boot into a place in the flash, followed by its device tree.
* The microcode pointer is written so that U-Boot can find the microcode in
* the device tree very early in boot.
*
* @image: Pointer to image
* @size: Size of image in bytes
* @uboot: Input file information for u-boot.bin
* @fdt: Input file information for u-boot.dtb
* @ucode_ptr: Address in U-Boot where the microcode pointer should be placed
* @return 0 if OK, -ve on error
*/
static int write_uboot(char *image, int size, struct input_file *uboot,
struct input_file *fdt, unsigned int ucode_ptr,
int collate_ucode, int *offset_uboot_top,
int *offset_uboot_start)
int uboot_size, fdt_size;
uboot_size = write_data(image, size, uboot->addr, uboot->fname, 0, 0);
if (uboot_size < 0)
return uboot_size;
fdt->addr = uboot->addr + uboot_size;
debug("U-Boot size %#x, FDT at %#x\n", uboot_size, fdt->addr);
fdt_size = write_data(image, size, fdt->addr, fdt->fname, 0, 0);
if (fdt_size < 0)
return fdt_size;
uboot_top = (uint32_t)(fdt->addr + size) + fdt_size;
uboot_top = write_ucode(image, size, fdt, fdt_size, ucode_ptr,
collate_ucode);
if (uboot_top < 0)
return uboot_top;
if (offset_uboot_top && offset_uboot_start) {
*offset_uboot_top = uboot_top;
*offset_uboot_start = (uint32_t)(uboot->addr + size);
}
return 0;
}
static void print_version(void)
{
printf("ifdtool v%s -- ", IFDTOOL_VERSION);
printf("Copyright (C) 2014 Google Inc.\n\n");
printf("SPDX-License-Identifier: GPL-2.0+\n");
}
static void print_usage(const char *name)
{
printf("usage: %s [-vhdix?] <filename> [<outfile>]\n", name);
printf("\n"
" -d | --dump: dump intel firmware descriptor\n"
" -x | --extract: extract intel fd modules\n"
" -i | --inject <region>:<module> inject file <module> into region <region>\n"
" -w | --write <addr>:<file> write file to appear at memory address <addr>\n"
" multiple files can be written simultaneously\n"
" -s | --spifreq <20|33|50> set the SPI frequency\n"
" -e | --em100 set SPI frequency to 20MHz and disable\n"
" Dual Output Fast Read Support\n"
" -l | --lock Lock firmware descriptor and ME region\n"
" -u | --unlock Unlock firmware descriptor and ME region\n"
" -r | --romsize Specify ROM size\n"
" -D | --write-descriptor <file> Write descriptor at base\n"
" -c | --create Create a new empty image\n"
" -v | --version: print the version\n"