Skip to content
Snippets Groups Projects
ifdtool.c 34 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * ifdtool - Manage Intel Firmware Descriptor information
     *
     * Copyright 2014 Google, Inc
     *
     * SPDX-License-Identifier:	GPL-2.0
     *
     * From Coreboot project, but it got a serious code clean-up
     * and a few new features
     */
    
    #include <assert.h>
    #include <fcntl.h>
    #include <getopt.h>
    #include <stdlib.h>
    #include <stdio.h>
    #include <string.h>
    #include <unistd.h>
    #include <sys/types.h>
    #include <sys/stat.h>
    
    #include <libfdt.h>
    
    #include "ifdtool.h"
    
    #undef DEBUG
    
    #ifdef DEBUG
    #define debug(fmt, args...)	printf(fmt, ##args)
    #else
    #define debug(fmt, args...)
    #endif
    
    #define FD_SIGNATURE		0x0FF0A55A
    #define FLREG_BASE(reg)		((reg & 0x00000fff) << 12);
    #define FLREG_LIMIT(reg)	(((reg & 0x0fff0000) >> 4) | 0xfff);
    
    
    enum input_file_type_t {
    	IF_normal,
    
    };
    
    struct input_file {
    	char *fname;
    	unsigned int addr;
    	enum input_file_type_t type;
    };
    
    
    /**
     * find_fd() - Find the flash description in the ROM image
     *
     * @image:	Pointer to image
     * @size:	Size of image in bytes
     * @return pointer to structure, or NULL if not found
     */
    static struct fdbar_t *find_fd(char *image, int size)
    {
    	uint32_t *ptr, *end;
    
    	/* Scan for FD signature */
    	for (ptr = (uint32_t *)image, end = ptr + size / 4; ptr < end; ptr++) {
    		if (*ptr == FD_SIGNATURE)
    			break;
    	}
    
    	if (ptr == end) {
    		printf("No Flash Descriptor found in this image\n");
    		return NULL;
    	}
    
    
    	debug("Found Flash Descriptor signature at 0x%08lx\n",
    	      (char *)ptr - image);
    
    72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    
    	return (struct fdbar_t *)ptr;
    }
    
    /**
     * get_region() - Get information about the selected region
     *
     * @frba:		Flash region list
     * @region_type:	Type of region (0..MAX_REGIONS-1)
     * @region:		Region information is written here
     * @return 0 if OK, else -ve
     */
    static int get_region(struct frba_t *frba, int region_type,
    		      struct region_t *region)
    {
    	if (region_type >= MAX_REGIONS) {
    		fprintf(stderr, "Invalid region type.\n");
    		return -1;
    	}
    
    	region->base = FLREG_BASE(frba->flreg[region_type]);
    	region->limit = FLREG_LIMIT(frba->flreg[region_type]);
    	region->size = region->limit - region->base + 1;
    
    	return 0;
    }
    
    static const char *region_name(int region_type)
    {
    	static const char *const regions[] = {
    		"Flash Descriptor",
    		"BIOS",
    		"Intel ME",
    		"GbE",
    		"Platform Data"
    	};
    
    	assert(region_type < MAX_REGIONS);
    
    	return regions[region_type];
    }
    
    static const char *region_filename(int region_type)
    {
    	static const char *const region_filenames[] = {
    		"flashregion_0_flashdescriptor.bin",
    		"flashregion_1_bios.bin",
    		"flashregion_2_intel_me.bin",
    		"flashregion_3_gbe.bin",
    		"flashregion_4_platform_data.bin"
    	};
    
    	assert(region_type < MAX_REGIONS);
    
    	return region_filenames[region_type];
    }
    
    static int dump_region(int num, struct frba_t *frba)
    {
    	struct region_t region;
    	int ret;
    
    	ret = get_region(frba, num, &region);
    	if (ret)
    		return ret;
    
    	printf("  Flash Region %d (%s): %08x - %08x %s\n",
    	       num, region_name(num), region.base, region.limit,
    	       region.size < 1 ? "(unused)" : "");
    
    	return ret;
    }
    
    static void dump_frba(struct frba_t *frba)
    {
    	int i;
    
    	printf("Found Region Section\n");
    	for (i = 0; i < MAX_REGIONS; i++) {
    		printf("FLREG%d:    0x%08x\n", i, frba->flreg[i]);
    		dump_region(i, frba);
    	}
    }
    
    static void decode_spi_frequency(unsigned int freq)
    {
    	switch (freq) {
    	case SPI_FREQUENCY_20MHZ:
    		printf("20MHz");
    		break;
    	case SPI_FREQUENCY_33MHZ:
    		printf("33MHz");
    		break;
    	case SPI_FREQUENCY_50MHZ:
    		printf("50MHz");
    		break;
    	default:
    		printf("unknown<%x>MHz", freq);
    	}
    }
    
    static void decode_component_density(unsigned int density)
    {
    	switch (density) {
    	case COMPONENT_DENSITY_512KB:
    		printf("512KiB");
    		break;
    	case COMPONENT_DENSITY_1MB:
    		printf("1MiB");
    		break;
    	case COMPONENT_DENSITY_2MB:
    		printf("2MiB");
    		break;
    	case COMPONENT_DENSITY_4MB:
    		printf("4MiB");
    		break;
    	case COMPONENT_DENSITY_8MB:
    		printf("8MiB");
    		break;
    	case COMPONENT_DENSITY_16MB:
    		printf("16MiB");
    		break;
    	default:
    		printf("unknown<%x>MiB", density);
    	}
    }
    
    static void dump_fcba(struct fcba_t *fcba)
    {
    	printf("\nFound Component Section\n");
    	printf("FLCOMP     0x%08x\n", fcba->flcomp);
    	printf("  Dual Output Fast Read Support:       %ssupported\n",
    	       (fcba->flcomp & (1 << 30)) ? "" : "not ");
    	printf("  Read ID/Read Status Clock Frequency: ");
    	decode_spi_frequency((fcba->flcomp >> 27) & 7);
    	printf("\n  Write/Erase Clock Frequency:         ");
    	decode_spi_frequency((fcba->flcomp >> 24) & 7);
    	printf("\n  Fast Read Clock Frequency:           ");
    	decode_spi_frequency((fcba->flcomp >> 21) & 7);
    	printf("\n  Fast Read Support:                   %ssupported",
    	       (fcba->flcomp & (1 << 20)) ? "" : "not ");
    	printf("\n  Read Clock Frequency:                ");
    	decode_spi_frequency((fcba->flcomp >> 17) & 7);
    	printf("\n  Component 2 Density:                 ");
    	decode_component_density((fcba->flcomp >> 3) & 7);
    	printf("\n  Component 1 Density:                 ");
    	decode_component_density(fcba->flcomp & 7);
    	printf("\n");
    	printf("FLILL      0x%08x\n", fcba->flill);
    	printf("  Invalid Instruction 3: 0x%02x\n",
    	       (fcba->flill >> 24) & 0xff);
    	printf("  Invalid Instruction 2: 0x%02x\n",
    	       (fcba->flill >> 16) & 0xff);
    	printf("  Invalid Instruction 1: 0x%02x\n",
    	       (fcba->flill >> 8) & 0xff);
    	printf("  Invalid Instruction 0: 0x%02x\n",
    	       fcba->flill & 0xff);
    	printf("FLPB       0x%08x\n", fcba->flpb);
    	printf("  Flash Partition Boundary Address: 0x%06x\n\n",
    	       (fcba->flpb & 0xfff) << 12);
    }
    
    static void dump_fpsba(struct fpsba_t *fpsba)
    {
    	int i;
    
    	printf("Found PCH Strap Section\n");
    	for (i = 0; i < MAX_STRAPS; i++)
    		printf("PCHSTRP%-2d:  0x%08x\n", i, fpsba->pchstrp[i]);
    }
    
    static const char *get_enabled(int flag)
    {
    	return flag ? "enabled" : "disabled";
    }
    
    static void decode_flmstr(uint32_t flmstr)
    {
    	printf("  Platform Data Region Write Access: %s\n",
    	       get_enabled(flmstr & (1 << 28)));
    	printf("  GbE Region Write Access:           %s\n",
    	       get_enabled(flmstr & (1 << 27)));
    	printf("  Intel ME Region Write Access:      %s\n",
    	       get_enabled(flmstr & (1 << 26)));
    	printf("  Host CPU/BIOS Region Write Access: %s\n",
    	       get_enabled(flmstr & (1 << 25)));
    	printf("  Flash Descriptor Write Access:     %s\n",
    	       get_enabled(flmstr & (1 << 24)));
    
    	printf("  Platform Data Region Read Access:  %s\n",
    	       get_enabled(flmstr & (1 << 20)));
    	printf("  GbE Region Read Access:            %s\n",
    	       get_enabled(flmstr & (1 << 19)));
    	printf("  Intel ME Region Read Access:       %s\n",
    	       get_enabled(flmstr & (1 << 18)));
    	printf("  Host CPU/BIOS Region Read Access:  %s\n",
    	       get_enabled(flmstr & (1 << 17)));
    	printf("  Flash Descriptor Read Access:      %s\n",
    	       get_enabled(flmstr & (1 << 16)));
    
    	printf("  Requester ID:                      0x%04x\n\n",
    	       flmstr & 0xffff);
    }
    
    static void dump_fmba(struct fmba_t *fmba)
    {
    	printf("Found Master Section\n");
    	printf("FLMSTR1:   0x%08x (Host CPU/BIOS)\n", fmba->flmstr1);
    	decode_flmstr(fmba->flmstr1);
    	printf("FLMSTR2:   0x%08x (Intel ME)\n", fmba->flmstr2);
    	decode_flmstr(fmba->flmstr2);
    	printf("FLMSTR3:   0x%08x (GbE)\n", fmba->flmstr3);
    	decode_flmstr(fmba->flmstr3);
    }
    
    static void dump_fmsba(struct fmsba_t *fmsba)
    {
    	int i;
    
    	printf("Found Processor Strap Section\n");
    	for (i = 0; i < 4; i++)
    		printf("????:      0x%08x\n", fmsba->data[0]);
    }
    
    static void dump_jid(uint32_t jid)
    {
    	printf("    SPI Component Device ID 1:          0x%02x\n",
    	       (jid >> 16) & 0xff);
    	printf("    SPI Component Device ID 0:          0x%02x\n",
    	       (jid >> 8) & 0xff);
    	printf("    SPI Component Vendor ID:            0x%02x\n",
    	       jid & 0xff);
    }
    
    static void dump_vscc(uint32_t vscc)
    {
    	printf("    Lower Erase Opcode:                 0x%02x\n",
    	       vscc >> 24);
    	printf("    Lower Write Enable on Write Status: 0x%02x\n",
    	       vscc & (1 << 20) ? 0x06 : 0x50);
    	printf("    Lower Write Status Required:        %s\n",
    	       vscc & (1 << 19) ? "Yes" : "No");
    	printf("    Lower Write Granularity:            %d bytes\n",
    	       vscc & (1 << 18) ? 64 : 1);
    	printf("    Lower Block / Sector Erase Size:    ");
    	switch ((vscc >> 16) & 0x3) {
    	case 0:
    		printf("256 Byte\n");
    		break;
    	case 1:
    		printf("4KB\n");
    		break;
    	case 2:
    		printf("8KB\n");
    		break;
    	case 3:
    		printf("64KB\n");
    		break;
    	}
    
    	printf("    Upper Erase Opcode:                 0x%02x\n",
    	       (vscc >> 8) & 0xff);
    	printf("    Upper Write Enable on Write Status: 0x%02x\n",
    	       vscc & (1 << 4) ? 0x06 : 0x50);
    	printf("    Upper Write Status Required:        %s\n",
    	       vscc & (1 << 3) ? "Yes" : "No");
    	printf("    Upper Write Granularity:            %d bytes\n",
    	       vscc & (1 << 2) ? 64 : 1);
    	printf("    Upper Block / Sector Erase Size:    ");
    	switch (vscc & 0x3) {
    	case 0:
    		printf("256 Byte\n");
    		break;
    	case 1:
    		printf("4KB\n");
    		break;
    	case 2:
    		printf("8KB\n");
    		break;
    	case 3:
    		printf("64KB\n");
    		break;
    	}
    }
    
    static void dump_vtba(struct vtba_t *vtba, int vtl)
    {
    	int i;
    	int num = (vtl >> 1) < 8 ? (vtl >> 1) : 8;
    
    	printf("ME VSCC table:\n");
    	for (i = 0; i < num; i++) {
    		printf("  JID%d:  0x%08x\n", i, vtba->entry[i].jid);
    		dump_jid(vtba->entry[i].jid);
    		printf("  VSCC%d: 0x%08x\n", i, vtba->entry[i].vscc);
    		dump_vscc(vtba->entry[i].vscc);
    	}
    	printf("\n");
    }
    
    static void dump_oem(uint8_t *oem)
    {
    	int i, j;
    	printf("OEM Section:\n");
    	for (i = 0; i < 4; i++) {
    		printf("%02x:", i << 4);
    		for (j = 0; j < 16; j++)
    			printf(" %02x", oem[(i<<4)+j]);
    		printf("\n");
    	}
    	printf("\n");
    }
    
    /**
     * dump_fd() - Display a dump of the full flash description
     *
     * @image:	Pointer to image
     * @size:	Size of image in bytes
     * @return 0 if OK, -1 on error
     */
    static int dump_fd(char *image, int size)
    {
    	struct fdbar_t *fdb = find_fd(image, size);
    
    	if (!fdb)
    		return -1;
    
    	printf("FLMAP0:    0x%08x\n", fdb->flmap0);
    	printf("  NR:      %d\n", (fdb->flmap0 >> 24) & 7);
    	printf("  FRBA:    0x%x\n", ((fdb->flmap0 >> 16) & 0xff) << 4);
    	printf("  NC:      %d\n", ((fdb->flmap0 >> 8) & 3) + 1);
    	printf("  FCBA:    0x%x\n", ((fdb->flmap0) & 0xff) << 4);
    
    	printf("FLMAP1:    0x%08x\n", fdb->flmap1);
    	printf("  ISL:     0x%02x\n", (fdb->flmap1 >> 24) & 0xff);
    	printf("  FPSBA:   0x%x\n", ((fdb->flmap1 >> 16) & 0xff) << 4);
    	printf("  NM:      %d\n", (fdb->flmap1 >> 8) & 3);
    	printf("  FMBA:    0x%x\n", ((fdb->flmap1) & 0xff) << 4);
    
    	printf("FLMAP2:    0x%08x\n", fdb->flmap2);
    	printf("  PSL:     0x%04x\n", (fdb->flmap2 >> 8) & 0xffff);
    	printf("  FMSBA:   0x%x\n", ((fdb->flmap2) & 0xff) << 4);
    
    	printf("FLUMAP1:   0x%08x\n", fdb->flumap1);
    	printf("  Intel ME VSCC Table Length (VTL):        %d\n",
    	       (fdb->flumap1 >> 8) & 0xff);
    	printf("  Intel ME VSCC Table Base Address (VTBA): 0x%06x\n\n",
    	       (fdb->flumap1 & 0xff) << 4);
    	dump_vtba((struct vtba_t *)
    			(image + ((fdb->flumap1 & 0xff) << 4)),
    			(fdb->flumap1 >> 8) & 0xff);
    	dump_oem((uint8_t *)image + 0xf00);
    	dump_frba((struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff)
    			<< 4)));
    	dump_fcba((struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4)));
    	dump_fpsba((struct fpsba_t *)
    			(image + (((fdb->flmap1 >> 16) & 0xff) << 4)));
    	dump_fmba((struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4)));
    	dump_fmsba((struct fmsba_t *)(image + (((fdb->flmap2) & 0xff) << 4)));
    
    	return 0;
    }
    
    /**
     * write_regions() - Write each region from an image to its own file
     *
     * The filename to use in each case is fixed - see region_filename()
     *
     * @image:	Pointer to image
     * @size:	Size of image in bytes
     * @return 0 if OK, -ve on error
     */
    static int write_regions(char *image, int size)
    {
    	struct fdbar_t *fdb;
    	struct frba_t *frba;
    	int ret = 0;
    	int i;
    
    	fdb =  find_fd(image, size);
    	if (!fdb)
    		return -1;
    
    	frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4));
    
    	for (i = 0; i < MAX_REGIONS; i++) {
    		struct region_t region;
    		int region_fd;
    
    		ret = get_region(frba, i, &region);
    		if (ret)
    			return ret;
    		dump_region(i, frba);
    
    			continue;
    		region_fd = open(region_filename(i),
    				 O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR |
    				 S_IWUSR | S_IRGRP | S_IROTH);
    		if (write(region_fd, image + region.base, region.size) !=
    				region.size) {
    			perror("Error while writing");
    			ret = -1;
    		}
    		close(region_fd);
    	}
    
    	return ret;
    }
    
    
    static int perror_fname(const char *fmt, const char *fname)
    {
    	char msg[strlen(fmt) + strlen(fname) + 1];
    
    	sprintf(msg, fmt, fname);
    	perror(msg);
    
    	return -1;
    }
    
    
    /**
     * write_image() - Write the image to a file
     *
     * @filename:	Filename to use for the image
     * @image:	Pointer to image
     * @size:	Size of image in bytes
     * @return 0 if OK, -ve on error
     */
    static int write_image(char *filename, char *image, int size)
    {
    	int new_fd;
    
    	debug("Writing new image to %s\n", filename);
    
    	new_fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR |
    		      S_IWUSR | S_IRGRP | S_IROTH);
    
    	if (new_fd < 0)
    		return perror_fname("Could not open file '%s'", filename);
    	if (write(new_fd, image, size) != size)
    		return perror_fname("Could not write file '%s'", filename);
    
    	close(new_fd);
    
    	return 0;
    }
    
    /**
     * set_spi_frequency() - Set the SPI frequency to use when booting
     *
     * Several frequencies are supported, some of which work with fast devices.
     * For SPI emulators, the slowest (SPI_FREQUENCY_20MHZ) is often used. The
     * Intel boot system uses this information somehow on boot.
     *
     * The image is updated with the supplied value
     *
     * @image:	Pointer to image
     * @size:	Size of image in bytes
     * @freq:	SPI frequency to use
     */
    static void set_spi_frequency(char *image, int size, enum spi_frequency freq)
    {
    	struct fdbar_t *fdb = find_fd(image, size);
    	struct fcba_t *fcba;
    
    	fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4));
    
    	/* clear bits 21-29 */
    	fcba->flcomp &= ~0x3fe00000;
    	/* Read ID and Read Status Clock Frequency */
    	fcba->flcomp |= freq << 27;
    	/* Write and Erase Clock Frequency */
    	fcba->flcomp |= freq << 24;
    	/* Fast Read Clock Frequency */
    	fcba->flcomp |= freq << 21;
    }
    
    /**
     * set_em100_mode() - Set a SPI frequency that will work with Dediprog EM100
     *
     * @image:	Pointer to image
     * @size:	Size of image in bytes
     */
    static void set_em100_mode(char *image, int size)
    {
    	struct fdbar_t *fdb = find_fd(image, size);
    	struct fcba_t *fcba;
    
    	fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4));
    	fcba->flcomp &= ~(1 << 30);
    	set_spi_frequency(image, size, SPI_FREQUENCY_20MHZ);
    }
    
    /**
     * lock_descriptor() - Lock the NE descriptor so it cannot be updated
     *
     * @image:	Pointer to image
     * @size:	Size of image in bytes
     */
    static void lock_descriptor(char *image, int size)
    {
    	struct fdbar_t *fdb = find_fd(image, size);
    	struct fmba_t *fmba;
    
    	/*
    	 * TODO: Dynamically take Platform Data Region and GbE Region into
    	 * account.
    	 */
    	fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4));
    	fmba->flmstr1 = 0x0a0b0000;
    	fmba->flmstr2 = 0x0c0d0000;
    	fmba->flmstr3 = 0x08080118;
    }
    
    /**
     * unlock_descriptor() - Lock the NE descriptor so it can be updated
     *
     * @image:	Pointer to image
     * @size:	Size of image in bytes
     */
    static void unlock_descriptor(char *image, int size)
    {
    	struct fdbar_t *fdb = find_fd(image, size);
    	struct fmba_t *fmba;
    
    	fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4));
    	fmba->flmstr1 = 0xffff0000;
    	fmba->flmstr2 = 0xffff0000;
    	fmba->flmstr3 = 0x08080118;
    }
    
    /**
     * open_for_read() - Open a file for reading
     *
     * @fname:	Filename to open
     * @sizep:	Returns file size in bytes
     * @return 0 if OK, -1 on error
     */
    int open_for_read(const char *fname, int *sizep)
    {
    	int fd = open(fname, O_RDONLY);
    	struct stat buf;
    
    
    	if (fd == -1)
    		return perror_fname("Could not open file '%s'", fname);
    	if (fstat(fd, &buf) == -1)
    		return perror_fname("Could not stat file '%s'", fname);
    
    	*sizep = buf.st_size;
    	debug("File %s is %d bytes\n", fname, *sizep);
    
    	return fd;
    }
    
    /**
     * inject_region() - Add a file to an image region
     *
     * This puts a file into a particular region of the flash. Several pre-defined
     * regions are used.
     *
     * @image:		Pointer to image
     * @size:		Size of image in bytes
     * @region_type:	Region where the file should be added
     * @region_fname:	Filename to add to the image
     * @return 0 if OK, -ve on error
     */
    int inject_region(char *image, int size, int region_type, char *region_fname)
    {
    	struct fdbar_t *fdb = find_fd(image, size);
    	struct region_t region;
    	struct frba_t *frba;
    	int region_size;
    	int offset = 0;
    	int region_fd;
    	int ret;
    
    	if (!fdb)
    		exit(EXIT_FAILURE);
    	frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4));
    
    	ret = get_region(frba, region_type, &region);
    	if (ret)
    		return -1;
    	if (region.size <= 0xfff) {
    		fprintf(stderr, "Region %s is disabled in target. Not injecting.\n",
    			region_name(region_type));
    		return -1;
    	}
    
    	region_fd = open_for_read(region_fname, &region_size);
    	if (region_fd < 0)
    		return region_fd;
    
    	if ((region_size > region.size) ||
    	    ((region_type != 1) && (region_size > region.size))) {
    		fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x)  bytes. Not injecting.\n",
    			region_name(region_type), region.size,
    			region.size, region_size, region_size);
    		return -1;
    	}
    
    	if ((region_type == 1) && (region_size < region.size)) {
    		fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x) bytes. Padding before injecting.\n",
    			region_name(region_type), region.size,
    			region.size, region_size, region_size);
    		offset = region.size - region_size;
    		memset(image + region.base, 0xff, offset);
    	}
    
    	if (size < region.base + offset + region_size) {
    		fprintf(stderr, "Output file is too small. (%d < %d)\n",
    			size, region.base + offset + region_size);
    		return -1;
    	}
    
    	if (read(region_fd, image + region.base + offset, region_size)
    							!= region_size) {
    		perror("Could not read file");
    		return -1;
    	}
    
    	close(region_fd);
    
    	debug("Adding %s as the %s section\n", region_fname,
    	      region_name(region_type));
    
    	return 0;
    }
    
    /**
     * write_data() - Write some raw data into a region
     *
     * This puts a file into a particular place in the flash, ignoring the
     * regions. Be careful not to overwrite something important.
     *
     * @image:		Pointer to image
     * @size:		Size of image in bytes
     * @addr:		x86 ROM address to put file. The ROM ends at
     *			0xffffffff so use an address relative to that. For an
     *			8MB ROM the start address is 0xfff80000.
     * @write_fname:	Filename to add to the image
    
     * @offset_uboot_top:	Offset of the top of U-Boot
    
     * @offset_uboot_start:	Offset of the start of U-Boot
    
     * @return number of bytes written if OK, -ve on error
    
     */
    static int write_data(char *image, int size, unsigned int addr,
    
    		      const char *write_fname, int offset_uboot_top,
    		      int offset_uboot_start)
    
    {
    	int write_fd, write_size;
    	int offset;
    
    	write_fd = open_for_read(write_fname, &write_size);
    	if (write_fd < 0)
    		return write_fd;
    
    
    	offset = (uint32_t)(addr + size);
    
    	if (offset_uboot_top) {
    		if (offset_uboot_start < offset &&
    		    offset_uboot_top >= offset) {
    			fprintf(stderr, "U-Boot image overlaps with region '%s'\n",
    				write_fname);
    			fprintf(stderr,
    				"U-Boot finishes at offset %x, file starts at %x\n",
    				offset_uboot_top, offset);
    			return -EXDEV;
    		}
    		if (offset_uboot_start > offset &&
    		    offset_uboot_start <= offset + write_size) {
    			fprintf(stderr, "U-Boot image overlaps with region '%s'\n",
    				write_fname);
    			fprintf(stderr,
    				"U-Boot starts at offset %x, file finishes at %x\n",
    				offset_uboot_start, offset + write_size);
    			return -EXDEV;
    		}
    
    	debug("Writing %s to offset %#x\n", write_fname, offset);
    
    	if (offset < 0 || offset + write_size > size) {
    		fprintf(stderr, "Output file is too small. (%d < %d)\n",
    			size, offset + write_size);
    		return -1;
    	}
    
    	if (read(write_fd, image + offset, write_size) != write_size) {
    		perror("Could not read file");
    		return -1;
    	}
    
    	close(write_fd);
    
    
    static int scan_ucode(const void *blob, char *ucode_base, int *countp,
    		      const char **datap, int *data_sizep)
    {
    	const char *data = NULL;
    	int node, count;
    	int data_size;
    	char *ucode;
    
    	for (node = 0, count = 0, ucode = ucode_base; node >= 0; count++) {
    		node = fdt_node_offset_by_compatible(blob, node,
    						     "intel,microcode");
    		if (node < 0)
    			break;
    
    		data = fdt_getprop(blob, node, "data", &data_size);
    		if (!data) {
    			debug("Missing microcode data in FDT '%s': %s\n",
    			      fdt_get_name(blob, node, NULL),
    			      fdt_strerror(data_size));
    			return -ENOENT;
    		}
    
    
    		if (ucode_base)
    			memcpy(ucode, data, data_size);
    
    		ucode += data_size;
    	}
    
    	if (countp)
    		*countp = count;
    	if (datap)
    		*datap = data;
    	if (data_sizep)
    		*data_sizep = data_size;
    
    	return ucode - ucode_base;
    }
    
    
    static int remove_ucode(char *blob)
    {
    	int node, count;
    	int ret;
    
    	/* Keep going until we find no more microcode to remove */
    	do {
    		for (node = 0, count = 0; node >= 0;) {
    			int ret;
    
    			node = fdt_node_offset_by_compatible(blob, node,
    							     "intel,microcode");
    			if (node < 0)
    				break;
    
    			ret = fdt_delprop(blob, node, "data");
    
    			/*
    			 * -FDT_ERR_NOTFOUND means we already removed the
    			 * data for this one, so we just continue.
    			 * 0 means we did remove it, so offsets may have
    			 * changed and we need to restart our scan.
    			 * Anything else indicates an error we should report.
    			 */
    			if (ret == -FDT_ERR_NOTFOUND)
    				continue;
    			else if (!ret)
    				node = 0;
    			else
    				return ret;
    		}
    	} while (count);
    
    	/* Pack down to remove excees space */
    	ret = fdt_pack(blob);
    	if (ret)
    		return ret;
    
    	return fdt_totalsize(blob);
    }
    
    
    static int write_ucode(char *image, int size, struct input_file *fdt,
    
    		       int fdt_size, unsigned int ucode_ptr,
    		       int collate_ucode)
    
    	uint32_t *ptr;
    	int ucode_size;
    	int data_size;
    	int offset;
    	int count;
    
    
    	blob = (void *)image + (uint32_t)(fdt->addr + size);
    
    	debug("DTB at %lx\n", (char *)blob - image);
    
    	/* Find out about the micrcode we have */
    	ucode_size = scan_ucode(blob, NULL, &count, &data, &data_size);
    	if (ucode_size < 0)
    		return ucode_size;
    	if (!count) {
    		debug("No microcode found in FDT\n");
    		return -ENOENT;
    	}
    
    
    	if (count > 1 && !collate_ucode) {
    
    			"Cannot handle multiple microcode blocks - please use -C flag to collate them\n");
    
    	 * Collect the microcode into a buffer, remove it from the device
    	 * tree and place it immediately above the (now smaller) device tree.
    
    	 */
    	if (collate_ucode && count > 1) {
    		ucode_buf = malloc(ucode_size);
    		if (!ucode_buf) {
    			fprintf(stderr,
    				"Out of memory for microcode (%d bytes)\n",
    				ucode_size);
    			return -ENOMEM;
    		}
    		ret = scan_ucode(blob, ucode_buf, NULL, NULL, NULL);
    		if (ret < 0)
    			return ret;
    
    
    		/* Remove the microcode from the device tree */
    		ret = remove_ucode((char *)blob);
    		if (ret < 0) {
    			debug("Could not remove FDT microcode: %s\n",
    			      fdt_strerror(ret));
    			return -EINVAL;
    		}
    
    		debug("Collated %d microcode block(s)\n", count);
    
    		debug("Device tree reduced from %x to %x bytes\n",
    		      fdt_size, ret);
    		fdt_size = ret;
    
    
    		/*
    		 * Place microcode area immediately above the FDT, aligned
    		 * to a 16-byte boundary.
    		 */
    		ucode_base = (char *)(((unsigned long)blob + fdt_size + 15) &
    				~15);
    
    		data = ucode_base;
    		data_size = ucode_size;
    		memcpy(ucode_base, ucode_buf, ucode_size);
    		free(ucode_buf);
    	}
    
    
    	offset = (uint32_t)(ucode_ptr + size);
    	ptr = (void *)image + offset;
    
    	ptr[0] = (data - image) - size;
    	ptr[1] = data_size;
    	debug("Wrote microcode pointer at %x: addr=%x, size=%x\n", ucode_ptr,
    	      ptr[0], ptr[1]);
    
    
    	return (collate_ucode ? data + data_size : (char *)blob + fdt_size) -
    			image;
    
    /**
     * write_uboot() - Write U-Boot, device tree and microcode pointer
     *
     * This writes U-Boot into a place in the flash, followed by its device tree.
     * The microcode pointer is written so that U-Boot can find the microcode in
     * the device tree very early in boot.
     *
     * @image:	Pointer to image
     * @size:	Size of image in bytes
     * @uboot:	Input file information for u-boot.bin
     * @fdt:	Input file information for u-boot.dtb
     * @ucode_ptr:	Address in U-Boot where the microcode pointer should be placed
     * @return 0 if OK, -ve on error
     */
    static int write_uboot(char *image, int size, struct input_file *uboot,
    
    		       struct input_file *fdt, unsigned int ucode_ptr,
    
    		       int collate_ucode, int *offset_uboot_top,
    		       int *offset_uboot_start)
    
    	uboot_size = write_data(image, size, uboot->addr, uboot->fname, 0, 0);
    
    	if (uboot_size < 0)
    		return uboot_size;
    	fdt->addr = uboot->addr + uboot_size;
    	debug("U-Boot size %#x, FDT at %#x\n", uboot_size, fdt->addr);
    
    	fdt_size = write_data(image, size, fdt->addr, fdt->fname, 0, 0);
    
    	if (fdt_size < 0)
    		return fdt_size;
    
    
    	uboot_top = (uint32_t)(fdt->addr + size) + fdt_size;
    
    		uboot_top = write_ucode(image, size, fdt, fdt_size, ucode_ptr,
    					collate_ucode);
    		if (uboot_top < 0)
    			return uboot_top;
    
    	if (offset_uboot_top && offset_uboot_start) {
    		*offset_uboot_top = uboot_top;
    		*offset_uboot_start = (uint32_t)(uboot->addr + size);
    	}
    
    	return 0;
    
    }
    
    static void print_version(void)
    {
    	printf("ifdtool v%s -- ", IFDTOOL_VERSION);
    	printf("Copyright (C) 2014 Google Inc.\n\n");
    	printf("SPDX-License-Identifier:	GPL-2.0+\n");
    }
    
    static void print_usage(const char *name)
    {
    	printf("usage: %s [-vhdix?] <filename> [<outfile>]\n", name);
    	printf("\n"
    	       "   -d | --dump:                      dump intel firmware descriptor\n"
    	       "   -x | --extract:                   extract intel fd modules\n"
    	       "   -i | --inject <region>:<module>   inject file <module> into region <region>\n"
    	       "   -w | --write <addr>:<file>        write file to appear at memory address <addr>\n"
    
    	       "                                     multiple files can be written simultaneously\n"
    
    	       "   -s | --spifreq <20|33|50>         set the SPI frequency\n"
    	       "   -e | --em100                      set SPI frequency to 20MHz and disable\n"
    	       "                                     Dual Output Fast Read Support\n"
    	       "   -l | --lock                       Lock firmware descriptor and ME region\n"
    	       "   -u | --unlock                     Unlock firmware descriptor and ME region\n"
    	       "   -r | --romsize                    Specify ROM size\n"
    	       "   -D | --write-descriptor <file>    Write descriptor at base\n"
    	       "   -c | --create                     Create a new empty image\n"
    	       "   -v | --version:                   print the version\n"