Skip to content
Snippets Groups Projects
cf_qspi.c 9.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Freescale Coldfire Queued SPI driver
     *
     * NOTE:
     * This driver is written to transfer 8 bit at-a-time and uses the dedicated
     * SPI slave select pins as bit-banged GPIO to work with spi_flash subsystem.
     *
     * Copyright (C) 2011 Ruggedcom, Inc.
     * Richard Retanubun (richardretanubun@freescale.com)
     *
    
     * SPDX-License-Identifier:	GPL-2.0+
    
     */
    
    #include <common.h>
    #include <malloc.h>
    #include <spi.h>
    #include <asm/immap.h>
    #include <asm/io.h>
    
    DECLARE_GLOBAL_DATA_PTR;
    
    
    #define to_cf_qspi_slave(s) container_of(s, struct cf_qspi_slave, slave)
    
    
    struct cf_qspi_slave {
    	struct spi_slave slave;	/* Specific bus:cs ID for each device */
    	qspi_t *regs;		/* Pointer to SPI controller registers */
    	u16 qmr;		/* QMR: Queued Mode Register */
    	u16 qwr;		/* QWR: Queued Wrap Register */
    	u16 qcr;		/* QCR: Queued Command Ram */
    };
    
    /* Register write wrapper functions */
    static void write_qmr(volatile qspi_t *qspi, u16 val)   { qspi->mr = val; }
    static void write_qdlyr(volatile qspi_t *qspi, u16 val) { qspi->dlyr = val; }
    static void write_qwr(volatile qspi_t *qspi, u16 val)   { qspi->wr = val; }
    static void write_qir(volatile qspi_t *qspi, u16 val)   { qspi->ir = val; }
    static void write_qar(volatile qspi_t *qspi, u16 val)   { qspi->ar = val; }
    static void write_qdr(volatile qspi_t *qspi, u16 val)   { qspi->dr = val; }
    /* Register read wrapper functions */
    static u16 read_qdlyr(volatile qspi_t *qspi) { return qspi->dlyr; }
    static u16 read_qwr(volatile qspi_t *qspi)   { return qspi->wr; }
    static u16 read_qir(volatile qspi_t *qspi)   { return qspi->ir; }
    static u16 read_qdr(volatile qspi_t *qspi)   { return qspi->dr; }
    
    /* These call points may be different for each ColdFire CPU */
    extern void cfspi_port_conf(void);
    static void cfspi_cs_activate(uint bus, uint cs, uint cs_active_high);
    static void cfspi_cs_deactivate(uint bus, uint cs, uint cs_active_high);
    
    int spi_claim_bus(struct spi_slave *slave)
    {
    	return 0;
    }
    void spi_release_bus(struct spi_slave *slave)
    {
    }
    
    __attribute__((weak))
    void spi_init(void)
    {
    	cfspi_port_conf();
    }
    
    __attribute__((weak))
    void spi_cs_activate(struct spi_slave *slave)
    {
    	struct cf_qspi_slave *dev = to_cf_qspi_slave(slave);
    
    	cfspi_cs_activate(slave->bus, slave->cs, !(dev->qwr & QSPI_QWR_CSIV));
    }
    
    __attribute__((weak))
    void spi_cs_deactivate(struct spi_slave *slave)
    {
    	struct cf_qspi_slave *dev = to_cf_qspi_slave(slave);
    
    	cfspi_cs_deactivate(slave->bus, slave->cs, !(dev->qwr & QSPI_QWR_CSIV));
    }
    
    __attribute__((weak))
    int spi_cs_is_valid(unsigned int bus, unsigned int cs)
    {
    	/* Only 1 bus and 4 chipselect per controller */
    	if (bus == 0 && (cs >= 0 && cs < 4))
    		return 1;
    	else
    		return 0;
    }
    
    void spi_free_slave(struct spi_slave *slave)
    {
    	struct cf_qspi_slave *dev = to_cf_qspi_slave(slave);
    
    	free(dev);
    }
    
    /* Translate information given by spi_setup_slave to members of cf_qspi_slave */
    struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
    				  unsigned int max_hz, unsigned int mode)
    {
    	struct cf_qspi_slave *dev = NULL;
    
    	if (!spi_cs_is_valid(bus, cs))
    		return NULL;
    
    
    	dev = spi_alloc_slave(struct cf_qspi_slave, bus, cs);
    
    	if (!dev)
    		return NULL;
    
    	/* Initialize to known value */
    	dev->regs      = (qspi_t *)MMAP_QSPI;
    	dev->qmr       = 0;
    	dev->qwr       = 0;
    	dev->qcr       = 0;
    
    
    	/* Map max_hz to QMR[BAUD] */
    	if (max_hz == 0) /* Go as fast as possible */
    		dev->qmr = 2u;
    	else /* Get the closest baud rate */
    		dev->qmr = clamp(((gd->bus_clk >> 2) + max_hz - 1)/max_hz,
    
    
    	/* Map mode to QMR[CPOL] and QMR[CPHA] */
    	if (mode & SPI_CPOL)
    		dev->qmr |= QSPI_QMR_CPOL;
    
    	if (mode & SPI_CPHA)
    		dev->qmr |= QSPI_QMR_CPHA;
    
    	/* Hardcode bit length to 8 bit per transter */
    	dev->qmr |= QSPI_QMR_BITS_8;
    
    	/* Set QMR[MSTR] to enable QSPI as master */
    	dev->qmr |= QSPI_QMR_MSTR;
    
    	/*
    	 * Set QCR and QWR to default values for spi flash operation.
    	 * If more custom QCR and QRW are needed, overload mode variable
    	 */
    	dev->qcr = (QSPI_QDR_CONT | QSPI_QDR_BITSE);
    
    	if (!(mode & SPI_CS_HIGH))
    		dev->qwr |= QSPI_QWR_CSIV;
    
    	return &dev->slave;
    }
    
    /* Transfer 8 bit at a time */
    int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
    	     void *din, unsigned long flags)
    {
    	struct cf_qspi_slave *dev = to_cf_qspi_slave(slave);
    	volatile qspi_t *qspi = dev->regs;
    	u8 *txbuf = (u8 *)dout;
    	u8 *rxbuf = (u8 *)din;
    
    	u32 count = DIV_ROUND_UP(bitlen, 8);
    
    	u32 n, i = 0;
    
    	/* Sanitize arguments */
    	if (slave == NULL) {
    		printf("%s: NULL slave ptr\n", __func__);
    		return -1;
    	}
    
    	if (flags & SPI_XFER_BEGIN)
    		spi_cs_activate(slave);
    
    	/* There is something to send, lets process it. spi_xfer is also called
    	 * just to toggle chip select, so bitlen of 0 is valid */
    	if (count > 0) {
    		/*
    		* NOTE: Since chip select is driven as a bit-bang-ed GPIO
    		* using spi_cs_activate() and spi_cs_deactivate(),
    		* the chip select settings inside the controller
    		* (i.e. QCR[CONT] and QWR[CSIV]) are moot. The bits are set to
    		* keep the controller settings consistent with the actual
    		* operation of the bus.
    		*/
    
    		/* Write the slave device's settings for the controller.*/
    		write_qmr(qspi, dev->qmr);
    		write_qwr(qspi, dev->qwr);
    
    		/* Limit transfer to 16 at a time */
    		n = min(count, 16u);
    		do {
    			/* Setup queue end point */
    			write_qwr(qspi, ((read_qwr(qspi) & QSPI_QWR_ENDQP_MASK)
    				| QSPI_QWR_ENDQP((n-1))));
    
    			/* Write Command RAM */
    			write_qar(qspi, QSPI_QAR_CMD);
    			for (i = 0; i < n; ++i)
    				write_qdr(qspi, dev->qcr);
    
    			/* Write TxBuf, if none given, fill with ZEROes */
    			write_qar(qspi, QSPI_QAR_TRANS);
    			if (txbuf) {
    				for (i = 0; i < n; ++i)
    					write_qdr(qspi, *txbuf++);
    			} else {
    				for (i = 0; i < n; ++i)
    					write_qdr(qspi, 0);
    			}
    
    			/* Clear QIR[SPIF] by writing a 1 to it */
    			write_qir(qspi, read_qir(qspi) | QSPI_QIR_SPIF);
    			/* Set QDLYR[SPE] to start sending */
    			write_qdlyr(qspi, read_qdlyr(qspi) | QSPI_QDLYR_SPE);
    
    			/* Poll QIR[SPIF] for transfer completion */
    			while ((read_qir(qspi) & QSPI_QIR_SPIF) != 1)
    				udelay(1);
    
    			/* If given read RxBuf, load data to it */
    			if (rxbuf) {
    				write_qar(qspi, QSPI_QAR_RECV);
    				for (i = 0; i < n; ++i)
    					*rxbuf++ = read_qdr(qspi);
    			}
    
    			/* Decrement count */
    			count -= n;
    		} while (count);
    	}
    
    	if (flags & SPI_XFER_END)
    		spi_cs_deactivate(slave);
    
    	return 0;
    }
    
    /* Each MCF CPU may have different pin assignments for chip selects. */
    #if defined(CONFIG_M5271)
    /* Assert chip select, val = [1|0] , dir = out, mode = GPIO */
    void cfspi_cs_activate(uint bus, uint cs, uint cs_active_high)
    {
    	debug("%s: bus %d cs %d cs_active_high %d\n",
    		__func__, bus, cs, cs_active_high);
    
    	switch (cs) {
    	case 0: /* QSPI_CS[0] = PQSPI[3] */
    		if (cs_active_high)
    			mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x08);
    		else
    			mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xF7);
    
    		mbar_writeByte(MCF_GPIO_PDDR_QSPI,
    			mbar_readByte(MCF_GPIO_PDDR_QSPI) | 0x08);
    
    		mbar_writeByte(MCF_GPIO_PAR_QSPI,
    			mbar_readByte(MCF_GPIO_PAR_QSPI) & 0xDF);
    		break;
    	case 1: /* QSPI_CS[1] = PQSPI[4] */
    		if (cs_active_high)
    			mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x10);
    		else
    			mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xEF);
    
    		mbar_writeByte(MCF_GPIO_PDDR_QSPI,
    			mbar_readByte(MCF_GPIO_PDDR_QSPI) | 0x10);
    
    		mbar_writeByte(MCF_GPIO_PAR_QSPI,
    			mbar_readByte(MCF_GPIO_PAR_QSPI) & 0x3F);
    		break;
    	case 2: /* QSPI_CS[2] = PTIMER[7] */
    		if (cs_active_high)
    			mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x80);
    		else
    			mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0x7F);
    
    		mbar_writeByte(MCF_GPIO_PDDR_TIMER,
    			mbar_readByte(MCF_GPIO_PDDR_TIMER) | 0x80);
    
    		mbar_writeShort(MCF_GPIO_PAR_TIMER,
    			mbar_readShort(MCF_GPIO_PAR_TIMER) & 0x3FFF);
    		break;
    	case 3: /* QSPI_CS[3] = PTIMER[3] */
    		if (cs_active_high)
    			mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x08);
    		else
    			mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0xF7);
    
    		mbar_writeByte(MCF_GPIO_PDDR_TIMER,
    			mbar_readByte(MCF_GPIO_PDDR_TIMER) | 0x08);
    
    		mbar_writeShort(MCF_GPIO_PAR_TIMER,
    			mbar_readShort(MCF_GPIO_PAR_TIMER) & 0xFF3F);
    		break;
    	}
    }
    
    /* Deassert chip select, val = [1|0], dir = in, mode = GPIO
     * direction set as IN to undrive the pin, external pullup/pulldown will bring
     * bus to deassert state.
     */
    void cfspi_cs_deactivate(uint bus, uint cs, uint cs_active_high)
    {
    	debug("%s: bus %d cs %d cs_active_high %d\n",
    		__func__, bus, cs, cs_active_high);
    
    	switch (cs) {
    	case 0: /* QSPI_CS[0] = PQSPI[3] */
    		if (cs_active_high)
    			mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xF7);
    		else
    			mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x08);
    
    		mbar_writeByte(MCF_GPIO_PDDR_QSPI,
    			mbar_readByte(MCF_GPIO_PDDR_QSPI) & 0xF7);
    
    		mbar_writeByte(MCF_GPIO_PAR_QSPI,
    			mbar_readByte(MCF_GPIO_PAR_QSPI) & 0xDF);
    		break;
    	case 1: /* QSPI_CS[1] = PQSPI[4] */
    		if (cs_active_high)
    			mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xEF);
    		else
    			mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x10);
    
    		mbar_writeByte(MCF_GPIO_PDDR_QSPI,
    			mbar_readByte(MCF_GPIO_PDDR_QSPI) & 0xEF);
    
    		mbar_writeByte(MCF_GPIO_PAR_QSPI,
    			mbar_readByte(MCF_GPIO_PAR_QSPI) & 0x3F);
    		break;
    	case 2: /* QSPI_CS[2] = PTIMER[7] */
    		if (cs_active_high)
    			mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0x7F);
    		else
    			mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x80);
    
    		mbar_writeByte(MCF_GPIO_PDDR_TIMER,
    			mbar_readByte(MCF_GPIO_PDDR_TIMER) & 0x7F);
    
    		mbar_writeShort(MCF_GPIO_PAR_TIMER,
    			mbar_readShort(MCF_GPIO_PAR_TIMER) & 0x3FFF);
    		break;
    	case 3: /* QSPI_CS[3] = PTIMER[3] */
    		if (cs_active_high)
    			mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0xF7);
    		else
    			mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x08);
    
    		mbar_writeByte(MCF_GPIO_PDDR_TIMER,
    			mbar_readByte(MCF_GPIO_PDDR_TIMER) & 0xF7);
    
    		mbar_writeShort(MCF_GPIO_PAR_TIMER,
    			mbar_readShort(MCF_GPIO_PAR_TIMER) & 0xFF3F);
    		break;
    	}
    }
    #endif /* CONFIG_M5271 */