Skip to content
Snippets Groups Projects
sandbox.c 16.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Simulate a SPI flash
     *
     * Copyright (c) 2011-2013 The Chromium OS Authors.
     * See file CREDITS for list of people who contributed to this
     * project.
     *
     * Licensed under the GPL-2 or later.
     */
    
    #include <common.h>
    
    #include <malloc.h>
    #include <spi.h>
    #include <os.h>
    
    #include <spi_flash.h>
    #include "sf_internal.h"
    
    #include <asm/getopt.h>
    #include <asm/spi.h>
    #include <asm/state.h>
    
    #include <dm/device-internal.h>
    #include <dm/lists.h>
    #include <dm/uclass-internal.h>
    
    DECLARE_GLOBAL_DATA_PTR;
    
    
    /*
     * The different states that our SPI flash transitions between.
     * We need to keep track of this across multiple xfer calls since
     * the SPI bus could possibly call down into us multiple times.
     */
    enum sandbox_sf_state {
    	SF_CMD,   /* default state -- we're awaiting a command */
    	SF_ID,    /* read the flash's (jedec) ID code */
    	SF_ADDR,  /* processing the offset in the flash to read/etc... */
    	SF_READ,  /* reading data from the flash */
    	SF_WRITE, /* writing data to the flash, i.e. page programming */
    	SF_ERASE, /* erase the flash */
    	SF_READ_STATUS, /* read the flash's status register */
    	SF_READ_STATUS1, /* read the flash's status register upper 8 bits*/
    
    	SF_WRITE_STATUS, /* write the flash's status register */
    
    };
    
    static const char *sandbox_sf_state_name(enum sandbox_sf_state state)
    {
    	static const char * const states[] = {
    		"CMD", "ID", "ADDR", "READ", "WRITE", "ERASE", "READ_STATUS",
    
    		"READ_STATUS1", "WRITE_STATUS",
    
    	};
    	return states[state];
    }
    
    /* Bits for the status register */
    #define STAT_WIP	(1 << 0)
    #define STAT_WEL	(1 << 1)
    
    /* Assume all SPI flashes have 3 byte addresses since they do atm */
    #define SF_ADDR_LEN	3
    
    
    #define IDCODE_LEN 3
    
    
    /* Used to quickly bulk erase backing store */
    static u8 sandbox_sf_0xff[0x1000];
    
    /* Internal state data for each SPI flash */
    struct sandbox_spi_flash {
    
    	unsigned int cs;	/* Chip select we are attached to */
    
    	/*
    	 * As we receive data over the SPI bus, our flash transitions
    	 * between states.  For example, we start off in the SF_CMD
    	 * state where the first byte tells us what operation to perform
    	 * (such as read or write the flash).  But the operation itself
    	 * can go through a few states such as first reading in the
    	 * offset in the flash to perform the requested operation.
    	 * Thus "state" stores the exact state that our machine is in
    	 * while "cmd" stores the overall command we're processing.
    	 */
    	enum sandbox_sf_state state;
    	uint cmd;
    
    	/* Erase size of current erase command */
    	uint erase_size;
    
    	/* Current position in the flash; used when reading/writing/etc... */
    	uint off;
    	/* How many address bytes we've consumed */
    	uint addr_bytes, pad_addr_bytes;
    	/* The current flash status (see STAT_XXX defines above) */
    	u16 status;
    	/* Data describing the flash we're emulating */
    
    	const struct spi_flash_params *data;
    
    	/* The file on disk to serv up data from */
    	int fd;
    };
    
    
    struct sandbox_spi_flash_plat_data {
    	const char *filename;
    	const char *device_name;
    	int bus;
    	int cs;
    };
    
    /**
     * This is a very strange probe function. If it has platform data (which may
     * have come from the device tree) then this function gets the filename and
     * device type from there. Failing that it looks at the command line
     * parameter.
     */
    static int sandbox_sf_probe(struct udevice *dev)
    
    {
    	/* spec = idcode:file */
    
    	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
    
    	const char *file;
    
    	size_t len, idname_len;
    	const struct spi_flash_params *data;
    
    	struct sandbox_spi_flash_plat_data *pdata = dev_get_platdata(dev);
    	struct sandbox_state *state = state_get_current();
    	struct udevice *bus = dev->parent;
    	const char *spec = NULL;
    	int ret = 0;
    	int cs = -1;
    	int i;
    
    	debug("%s: bus %d, looking for emul=%p: ", __func__, bus->seq, dev);
    	if (bus->seq >= 0 && bus->seq < CONFIG_SANDBOX_SPI_MAX_BUS) {
    		for (i = 0; i < CONFIG_SANDBOX_SPI_MAX_CS; i++) {
    			if (state->spi[bus->seq][i].emul == dev)
    				cs = i;
    		}
    	}
    	if (cs == -1) {
    		printf("Error: Unknown chip select for device '%s'",
    		       dev->name);
    		return -EINVAL;
    	}
    	debug("found at cs %d\n", cs);
    
    	if (!pdata->filename) {
    		struct sandbox_state *state = state_get_current();
    
    		assert(bus->seq != -1);
    		if (bus->seq < CONFIG_SANDBOX_SPI_MAX_BUS)
    			spec = state->spi[bus->seq][cs].spec;
    
    
    		file = strchr(spec, ':');
    		if (!file) {
    			printf("sandbox_sf: unable to parse file\n");
    			ret = -EINVAL;
    			goto error;
    		}
    		idname_len = file - spec;
    		pdata->filename = file + 1;
    		pdata->device_name = spec;
    		++file;
    	} else {
    		spec = strchr(pdata->device_name, ',');
    		if (spec)
    			spec++;
    		else
    			spec = pdata->device_name;
    		idname_len = strlen(spec);
    
    	debug("%s: device='%s'\n", __func__, spec);
    
    	for (data = spi_flash_params_table; data->name; data++) {
    
    		len = strlen(data->name);
    		if (idname_len != len)
    			continue;
    
    		if (!strncasecmp(spec, data->name, len))
    
    		printf("sandbox_sf: unknown flash '%*s'\n", (int)idname_len,
    		       spec);
    
    		goto error;
    	}
    
    	if (sandbox_sf_0xff[0] == 0x00)
    		memset(sandbox_sf_0xff, 0xff, sizeof(sandbox_sf_0xff));
    
    
    	sbsf->fd = os_open(pdata->filename, 02);
    
    	if (sbsf->fd == -1) {
    		free(sbsf);
    
    		printf("sandbox_sf: unable to open file '%s'\n",
    		       pdata->filename);
    		ret = -EIO;
    
    		goto error;
    	}
    
    	sbsf->data = data;
    
    	debug("%s: Got error %d\n", __func__, ret);
    
    static int sandbox_sf_remove(struct udevice *dev)
    
    	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
    
    
    	os_close(sbsf->fd);
    
    static void sandbox_sf_cs_activate(struct udevice *dev)
    
    	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
    
    
    	debug("sandbox_sf: CS activated; state is fresh!\n");
    
    	/* CS is asserted, so reset state */
    	sbsf->off = 0;
    	sbsf->addr_bytes = 0;
    	sbsf->pad_addr_bytes = 0;
    	sbsf->state = SF_CMD;
    	sbsf->cmd = SF_CMD;
    }
    
    
    static void sandbox_sf_cs_deactivate(struct udevice *dev)
    
    {
    	debug("sandbox_sf: CS deactivated; cmd done processing!\n");
    }
    
    
    /*
     * There are times when the data lines are allowed to tristate.  What
     * is actually sensed on the line depends on the hardware.  It could
     * always be 0xFF/0x00 (if there are pull ups/downs), or things could
     * float and so we'd get garbage back.  This func encapsulates that
     * scenario so we can worry about the details here.
     */
    static void sandbox_spi_tristate(u8 *buf, uint len)
    {
    	/* XXX: make this into a user config option ? */
    	memset(buf, 0xff, len);
    }
    
    
    /* Figure out what command this stream is telling us to do */
    static int sandbox_sf_process_cmd(struct sandbox_spi_flash *sbsf, const u8 *rx,
    				  u8 *tx)
    {
    	enum sandbox_sf_state oldstate = sbsf->state;
    
    	/* We need to output a byte for the cmd byte we just ate */
    
    	if (tx)
    		sandbox_spi_tristate(tx, 1);
    
    
    	sbsf->cmd = rx[0];
    	switch (sbsf->cmd) {
    	case CMD_READ_ID:
    		sbsf->state = SF_ID;
    		sbsf->cmd = SF_ID;
    		break;
    	case CMD_READ_ARRAY_FAST:
    		sbsf->pad_addr_bytes = 1;
    	case CMD_READ_ARRAY_SLOW:
    	case CMD_PAGE_PROGRAM:
    		sbsf->state = SF_ADDR;
    		break;
    	case CMD_WRITE_DISABLE:
    		debug(" write disabled\n");
    		sbsf->status &= ~STAT_WEL;
    		break;
    	case CMD_READ_STATUS:
    		sbsf->state = SF_READ_STATUS;
    		break;
    	case CMD_READ_STATUS1:
    		sbsf->state = SF_READ_STATUS1;
    		break;
    	case CMD_WRITE_ENABLE:
    		debug(" write enabled\n");
    		sbsf->status |= STAT_WEL;
    		break;
    
    	case CMD_WRITE_STATUS:
    		sbsf->state = SF_WRITE_STATUS;
    		break;
    
    		int flags = sbsf->data->flags;
    
    		/* we only support erase here */
    		if (sbsf->cmd == CMD_ERASE_CHIP) {
    			sbsf->erase_size = sbsf->data->sector_size *
    				sbsf->data->nr_sectors;
    		} else if (sbsf->cmd == CMD_ERASE_4K && (flags & SECT_4K)) {
    			sbsf->erase_size = 4 << 10;
    		} else if (sbsf->cmd == CMD_ERASE_32K && (flags & SECT_32K)) {
    			sbsf->erase_size = 32 << 10;
    		} else if (sbsf->cmd == CMD_ERASE_64K &&
    			   !(flags & (SECT_4K | SECT_32K))) {
    			sbsf->erase_size = 64 << 10;
    		} else {
    			debug(" cmd unknown: %#x\n", sbsf->cmd);
    
    		sbsf->state = SF_ADDR;
    		break;
    
    	}
    	}
    
    	if (oldstate != sbsf->state)
    		debug(" cmd: transition to %s state\n",
    		      sandbox_sf_state_name(sbsf->state));
    
    	return 0;
    }
    
    int sandbox_erase_part(struct sandbox_spi_flash *sbsf, int size)
    {
    	int todo;
    	int ret;
    
    	while (size > 0) {
    
    		todo = min(size, (int)sizeof(sandbox_sf_0xff));
    
    		ret = os_write(sbsf->fd, sandbox_sf_0xff, todo);
    		if (ret != todo)
    			return ret;
    		size -= todo;
    	}
    
    	return 0;
    }
    
    
    static int sandbox_sf_xfer(struct udevice *dev, unsigned int bitlen,
    			   const void *rxp, void *txp, unsigned long flags)
    
    	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
    	const uint8_t *rx = rxp;
    	uint8_t *tx = txp;
    
    	uint cnt, pos = 0;
    
    	int bytes = bitlen / 8;
    
    	int ret;
    
    	debug("sandbox_sf: state:%x(%s) bytes:%u\n", sbsf->state,
    	      sandbox_sf_state_name(sbsf->state), bytes);
    
    
    	if ((flags & SPI_XFER_BEGIN))
    		sandbox_sf_cs_activate(dev);
    
    
    	if (sbsf->state == SF_CMD) {
    		/* Figure out the initial state */
    
    		ret = sandbox_sf_process_cmd(sbsf, rx, tx);
    		if (ret)
    			return ret;
    
    		++pos;
    	}
    
    	/* Process the remaining data */
    	while (pos < bytes) {
    		switch (sbsf->state) {
    		case SF_ID: {
    			u8 id;
    
    			debug(" id: off:%u tx:", sbsf->off);
    
    			if (sbsf->off < IDCODE_LEN) {
    				/* Extract correct byte from ID 0x00aabbcc */
    				id = sbsf->data->jedec >>
    					(8 * (IDCODE_LEN - 1 - sbsf->off));
    			} else {
    
    			}
    			debug("%d %02x\n", sbsf->off, id);
    
    			tx[pos++] = id;
    			++sbsf->off;
    			break;
    		}
    		case SF_ADDR:
    			debug(" addr: bytes:%u rx:%02x ", sbsf->addr_bytes,
    			      rx[pos]);
    
    			if (sbsf->addr_bytes++ < SF_ADDR_LEN)
    				sbsf->off = (sbsf->off << 8) | rx[pos];
    			debug("addr:%06x\n", sbsf->off);
    
    
    			if (tx)
    				sandbox_spi_tristate(&tx[pos], 1);
    			pos++;
    
    
    			/* See if we're done processing */
    			if (sbsf->addr_bytes <
    					SF_ADDR_LEN + sbsf->pad_addr_bytes)
    				break;
    
    			/* Next state! */
    			if (os_lseek(sbsf->fd, sbsf->off, OS_SEEK_SET) < 0) {
    				puts("sandbox_sf: os_lseek() failed");
    
    			}
    			switch (sbsf->cmd) {
    			case CMD_READ_ARRAY_FAST:
    			case CMD_READ_ARRAY_SLOW:
    				sbsf->state = SF_READ;
    				break;
    			case CMD_PAGE_PROGRAM:
    				sbsf->state = SF_WRITE;
    				break;
    			default:
    				/* assume erase state ... */
    				sbsf->state = SF_ERASE;
    				goto case_sf_erase;
    			}
    			debug(" cmd: transition to %s state\n",
    			      sandbox_sf_state_name(sbsf->state));
    			break;
    		case SF_READ:
    			/*
    			 * XXX: need to handle exotic behavior:
    			 *      - reading past end of device
    			 */
    
    			cnt = bytes - pos;
    			debug(" tx: read(%u)\n", cnt);
    
    			ret = os_read(sbsf->fd, tx + pos, cnt);
    			if (ret < 0) {
    
    				puts("sandbox_sf: os_read() failed\n");
    				return -EIO;
    
    			}
    			pos += ret;
    			break;
    		case SF_READ_STATUS:
    			debug(" read status: %#x\n", sbsf->status);
    			cnt = bytes - pos;
    			memset(tx + pos, sbsf->status, cnt);
    			pos += cnt;
    			break;
    		case SF_READ_STATUS1:
    			debug(" read status: %#x\n", sbsf->status);
    			cnt = bytes - pos;
    			memset(tx + pos, sbsf->status >> 8, cnt);
    			pos += cnt;
    			break;
    
    		case SF_WRITE_STATUS:
    			debug(" write status: %#x (ignored)\n", rx[pos]);
    			pos = bytes;
    			break;
    
    		case SF_WRITE:
    			/*
    			 * XXX: need to handle exotic behavior:
    			 *      - unaligned addresses
    			 *      - more than a page (256) worth of data
    			 *      - reading past end of device
    			 */
    			if (!(sbsf->status & STAT_WEL)) {
    				puts("sandbox_sf: write enable not set before write\n");
    				goto done;
    			}
    
    			cnt = bytes - pos;
    			debug(" rx: write(%u)\n", cnt);
    
    			if (tx)
    				sandbox_spi_tristate(&tx[pos], cnt);
    
    			ret = os_write(sbsf->fd, rx + pos, cnt);
    			if (ret < 0) {
    				puts("sandbox_spi: os_write() failed\n");
    
    			}
    			pos += ret;
    			sbsf->status &= ~STAT_WEL;
    			break;
    		case SF_ERASE:
     case_sf_erase: {
    			if (!(sbsf->status & STAT_WEL)) {
    				puts("sandbox_sf: write enable not set before erase\n");
    				goto done;
    			}
    
    			/* verify address is aligned */
    
    			if (sbsf->off & (sbsf->erase_size - 1)) {
    
    				debug(" sector erase: cmd:%#x needs align:%#x, but we got %#x\n",
    
    				      sbsf->cmd, sbsf->erase_size,
    
    				      sbsf->off);
    				sbsf->status &= ~STAT_WEL;
    				goto done;
    			}
    
    
    			debug(" sector erase addr: %u, size: %u\n", sbsf->off,
    			      sbsf->erase_size);
    
    
    			cnt = bytes - pos;
    
    			if (tx)
    				sandbox_spi_tristate(&tx[pos], cnt);
    
    			pos += cnt;
    
    			/*
    			 * TODO(vapier@gentoo.org): latch WIP in status, and
    			 * delay before clearing it ?
    			 */
    
    			ret = sandbox_erase_part(sbsf, sbsf->erase_size);
    
    			sbsf->status &= ~STAT_WEL;
    			if (ret) {
    				debug("sandbox_sf: Erase failed\n");
    				goto done;
    			}
    			goto done;
    		}
    		default:
    			debug(" ??? no idea what to do ???\n");
    			goto done;
    		}
    	}
    
     done:
    
    	if (flags & SPI_XFER_END)
    		sandbox_sf_cs_deactivate(dev);
    	return pos == bytes ? 0 : -EIO;
    }
    
    int sandbox_sf_ofdata_to_platdata(struct udevice *dev)
    {
    	struct sandbox_spi_flash_plat_data *pdata = dev_get_platdata(dev);
    	const void *blob = gd->fdt_blob;
    	int node = dev->of_offset;
    
    	pdata->filename = fdt_getprop(blob, node, "sandbox,filename", NULL);
    	pdata->device_name = fdt_getprop(blob, node, "compatible", NULL);
    	if (!pdata->filename || !pdata->device_name) {
    		debug("%s: Missing properties, filename=%s, device_name=%s\n",
    		      __func__, pdata->filename, pdata->device_name);
    		return -EINVAL;
    	}
    
    	return 0;
    
    static const struct dm_spi_emul_ops sandbox_sf_emul_ops = {
    
    	.xfer          = sandbox_sf_xfer,
    };
    
    
    #ifdef CONFIG_SPI_FLASH
    
    static int sandbox_cmdline_cb_spi_sf(struct sandbox_state *state,
    				     const char *arg)
    {
    	unsigned long bus, cs;
    	const char *spec = sandbox_spi_parse_spec(arg, &bus, &cs);
    
    	if (!spec)
    		return 1;
    
    	/*
    	 * It is safe to not make a copy of 'spec' because it comes from the
    	 * command line.
    	 *
    	 * TODO(sjg@chromium.org): It would be nice if we could parse the
    	 * spec here, but the problem is that no U-Boot init has been done
    	 * yet. Perhaps we can figure something out.
    	 */
    	state->spi[bus][cs].spec = spec;
    	return 0;
    }
    SANDBOX_CMDLINE_OPT(spi_sf, 1, "connect a SPI flash: <bus>:<cs>:<id>:<file>");
    
    
    int sandbox_sf_bind_emul(struct sandbox_state *state, int busnum, int cs,
    			 struct udevice *bus, int of_offset, const char *spec)
    {
    	struct udevice *emul;
    	char name[20], *str;
    	struct driver *drv;
    	int ret;
    
    	/* now the emulator */
    	strncpy(name, spec, sizeof(name) - 6);
    	name[sizeof(name) - 6] = '\0';
    	strcat(name, "-emul");
    	str = strdup(name);
    	if (!str)
    		return -ENOMEM;
    	drv = lists_driver_lookup_name("sandbox_sf_emul");
    	if (!drv) {
    		puts("Cannot find sandbox_sf_emul driver\n");
    		return -ENOENT;
    	}
    	ret = device_bind(bus, drv, str, NULL, of_offset, &emul);
    	if (ret) {
    		printf("Cannot create emul device for spec '%s' (err=%d)\n",
    		       spec, ret);
    		return ret;
    	}
    	state->spi[busnum][cs].emul = emul;
    
    	return 0;
    }
    
    void sandbox_sf_unbind_emul(struct sandbox_state *state, int busnum, int cs)
    {
    	state->spi[busnum][cs].emul = NULL;
    }
    
    static int sandbox_sf_bind_bus_cs(struct sandbox_state *state, int busnum,
    				  int cs, const char *spec)
    {
    	struct udevice *bus, *slave;
    	int ret;
    
    	ret = uclass_find_device_by_seq(UCLASS_SPI, busnum, true, &bus);
    	if (ret) {
    		printf("Invalid bus %d for spec '%s' (err=%d)\n", busnum,
    		       spec, ret);
    		return ret;
    	}
    
    	ret = spi_find_chip_select(bus, cs, &slave);
    
    	if (!ret) {
    		printf("Chip select %d already exists for spec '%s'\n", cs,
    		       spec);
    		return -EEXIST;
    	}
    
    
    	ret = device_bind_driver(bus, "spi_flash_std", spec, &slave);
    
    	if (ret)
    		return ret;
    
    	return sandbox_sf_bind_emul(state, busnum, cs, bus, -1, spec);
    }
    
    int sandbox_spi_get_emul(struct sandbox_state *state,
    			 struct udevice *bus, struct udevice *slave,
    			 struct udevice **emulp)
    {
    	struct sandbox_spi_info *info;
    	int busnum = bus->seq;
    	int cs = spi_chip_select(slave);
    	int ret;
    
    	info = &state->spi[busnum][cs];
    	if (!info->emul) {
    		/* Use the same device tree node as the SPI flash device */
    		debug("%s: busnum=%u, cs=%u: binding SPI flash emulation: ",
    		      __func__, busnum, cs);
    		ret = sandbox_sf_bind_emul(state, busnum, cs, bus,
    					   slave->of_offset, slave->name);
    		if (ret) {
    			debug("failed (err=%d)\n", ret);
    			return ret;
    		}
    		debug("OK\n");
    	}
    	*emulp = info->emul;
    
    	return 0;
    }
    
    int dm_scan_other(bool pre_reloc_only)
    {
    	struct sandbox_state *state = state_get_current();
    	int busnum, cs;
    
    	if (pre_reloc_only)
    		return 0;
    	for (busnum = 0; busnum < CONFIG_SANDBOX_SPI_MAX_BUS; busnum++) {
    		for (cs = 0; cs < CONFIG_SANDBOX_SPI_MAX_CS; cs++) {
    			const char *spec = state->spi[busnum][cs].spec;
    			int ret;
    
    			if (spec) {
    				ret = sandbox_sf_bind_bus_cs(state, busnum,
    							     cs, spec);
    				if (ret) {
    					debug("%s: Bind failed for bus %d, cs %d\n",
    					      __func__, busnum, cs);
    					return ret;
    				}
    			}
    		}
    	}
    
    	return 0;
    }
    #endif
    
    static const struct udevice_id sandbox_sf_ids[] = {
    	{ .compatible = "sandbox,spi-flash" },
    	{ }
    };
    
    U_BOOT_DRIVER(sandbox_sf_emul) = {
    	.name		= "sandbox_sf_emul",
    	.id		= UCLASS_SPI_EMUL,
    	.of_match	= sandbox_sf_ids,
    	.ofdata_to_platdata = sandbox_sf_ofdata_to_platdata,
    	.probe		= sandbox_sf_probe,
    	.remove		= sandbox_sf_remove,
    	.priv_auto_alloc_size = sizeof(struct sandbox_spi_flash),
    	.platdata_auto_alloc_size = sizeof(struct sandbox_spi_flash_plat_data),
    	.ops		= &sandbox_sf_emul_ops,
    };