Skip to content
Snippets Groups Projects
davinci_nand.c 17.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * NAND driver for TI DaVinci based boards.
     *
     * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
     *
     * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
     */
    
    /*
     *
     * linux/drivers/mtd/nand/nand_davinci.c
     *
     * NAND Flash Driver
     *
     * Copyright (C) 2006 Texas Instruments.
     *
     * ----------------------------------------------------------------------------
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     *  You should have received a copy of the GNU General Public License
     *  along with this program; if not, write to the Free Software
     *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
     * ----------------------------------------------------------------------------
     *
     *  Overview:
     *   This is a device driver for the NAND flash device found on the
     *   DaVinci board which utilizes the Samsung k9k2g08 part.
     *
     Modifications:
     ver. 1.0: Feb 2005, Vinod/Sudhakar
     -
     *
     */
    
    #include <common.h>
    
    #include <asm/io.h>
    
    #include <nand.h>
    #include <asm/arch/nand_defs.h>
    #include <asm/arch/emif_defs.h>
    
    
    /* Definitions for 4-bit hardware ECC */
    #define NAND_TIMEOUT			10240
    #define NAND_ECC_BUSY			0xC
    #define NAND_4BITECC_MASK		0x03FF03FF
    #define EMIF_NANDFSR_ECC_STATE_MASK  	0x00000F00
    #define ECC_STATE_NO_ERR		0x0
    #define ECC_STATE_TOO_MANY_ERRS		0x1
    #define ECC_STATE_ERR_CORR_COMP_P	0x2
    #define ECC_STATE_ERR_CORR_COMP_N	0x3
    
    
    /*
     * Exploit the little endianness of the ARM to do multi-byte transfers
     * per device read. This can perform over twice as quickly as individual
     * byte transfers when buffer alignment is conducive.
     *
     * NOTE: This only works if the NAND is not connected to the 2 LSBs of
     * the address bus. On Davinci EVM platforms this has always been true.
     */
    static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
    {
    	struct nand_chip *chip = mtd->priv;
    	const u32 *nand = chip->IO_ADDR_R;
    
    	/* Make sure that buf is 32 bit aligned */
    	if (((int)buf & 0x3) != 0) {
    		if (((int)buf & 0x1) != 0) {
    			if (len) {
    				*buf = readb(nand);
    				buf += 1;
    				len--;
    			}
    		}
    
    		if (((int)buf & 0x3) != 0) {
    			if (len >= 2) {
    				*(u16 *)buf = readw(nand);
    				buf += 2;
    				len -= 2;
    			}
    		}
    	}
    
    	/* copy aligned data */
    	while (len >= 4) {
    
    		*(u32 *)buf = __raw_readl(nand);
    
    		buf += 4;
    		len -= 4;
    	}
    
    	/* mop up any remaining bytes */
    	if (len) {
    		if (len >= 2) {
    			*(u16 *)buf = readw(nand);
    			buf += 2;
    			len -= 2;
    		}
    
    		if (len)
    			*buf = readb(nand);
    	}
    }
    
    static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
    				   int len)
    {
    	struct nand_chip *chip = mtd->priv;
    	const u32 *nand = chip->IO_ADDR_W;
    
    	/* Make sure that buf is 32 bit aligned */
    	if (((int)buf & 0x3) != 0) {
    		if (((int)buf & 0x1) != 0) {
    			if (len) {
    				writeb(*buf, nand);
    				buf += 1;
    				len--;
    			}
    		}
    
    		if (((int)buf & 0x3) != 0) {
    			if (len >= 2) {
    				writew(*(u16 *)buf, nand);
    				buf += 2;
    				len -= 2;
    			}
    		}
    	}
    
    	/* copy aligned data */
    	while (len >= 4) {
    
    		__raw_writel(*(u32 *)buf, nand);
    
    		buf += 4;
    		len -= 4;
    	}
    
    	/* mop up any remaining bytes */
    	if (len) {
    		if (len >= 2) {
    			writew(*(u16 *)buf, nand);
    			buf += 2;
    			len -= 2;
    		}
    
    		if (len)
    			writeb(*buf, nand);
    	}
    }
    
    
    static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
    		unsigned int ctrl)
    
    {
    	struct		nand_chip *this = mtd->priv;
    	u_int32_t	IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
    
    
    	if (ctrl & NAND_CTRL_CHANGE) {
    
    		IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
    
    
    		if (ctrl & NAND_CLE)
    
    			IO_ADDR_W |= MASK_CLE;
    
    		if (ctrl & NAND_ALE)
    
    			IO_ADDR_W |= MASK_ALE;
    
    		this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
    
    William Juul's avatar
    William Juul committed
    	if (cmd != NAND_CMD_NONE)
    
    		writeb(cmd, IO_ADDR_W);
    
    #ifdef CONFIG_SYS_NAND_HW_ECC
    
    
    static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
    {
    
    	u_int32_t	val;
    
    	(void)__raw_readl(&(davinci_emif_regs->nandfecc[
    				CONFIG_SYS_NAND_CS - 2]));
    
    	val = __raw_readl(&davinci_emif_regs->nandfcr);
    
    	val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
    
    	val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
    
    	__raw_writel(val, &davinci_emif_regs->nandfcr);
    
    }
    
    static u_int32_t nand_davinci_readecc(struct mtd_info *mtd, u_int32_t region)
    {
    	u_int32_t	ecc = 0;
    
    
    	ecc = __raw_readl(&(davinci_emif_regs->nandfecc[region - 1]));
    
    	return ecc;
    
    static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
    		u_char *ecc_code)
    
    	const int region = 1;
    
    	tmp = nand_davinci_readecc(mtd, region);
    
    	/* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
    	 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
    	tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
    
    	/* Invert so that erased block ECC is correct */
    	tmp = ~tmp;
    
    	*ecc_code++ = tmp;
    	*ecc_code++ = tmp >>  8;
    	*ecc_code++ = tmp >> 16;
    
    	/* NOTE:  the above code matches mainline Linux:
    	 *	.PQR.stu ==> ~PQRstu
    	 *
    	 * MontaVista/TI kernels encode those bytes differently, use
    	 * complicated (and allegedly sometimes-wrong) correction code,
    	 * and usually shipped with U-Boot that uses software ECC:
    	 *	.PQR.stu ==> PsQRtu
    	 *
    	 * If you need MV/TI compatible NAND I/O in U-Boot, it should
    	 * be possible to (a) change the mangling above, (b) reverse
    	 * that mangling in nand_davinci_correct_data() below.
    	 */
    
    static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
    		u_char *read_ecc, u_char *calc_ecc)
    
    	struct nand_chip *this = mtd->priv;
    	u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
    					  (read_ecc[2] << 16);
    	u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
    					  (calc_ecc[2] << 16);
    	u_int32_t diff = ecc_calc ^ ecc_nand;
    
    	if (diff) {
    		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
    			/* Correctable error */
    			if ((diff >> (12 + 3)) < this->ecc.size) {
    				uint8_t find_bit = 1 << ((diff >> 12) & 7);
    				uint32_t find_byte = diff >> (12 + 3);
    
    				dat[find_byte] ^= find_bit;
    				MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
    					 "bit ECC error at offset: %d, bit: "
    					 "%d\n", find_byte, find_bit);
    				return 1;
    			} else {
    				return -1;
    			}
    		} else if (!(diff & (diff - 1))) {
    			/* Single bit ECC error in the ECC itself,
    			   nothing to fix */
    			MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
    				 "ECC.\n");
    			return 1;
    		} else {
    			/* Uncorrectable error */
    			MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
    			return -1;
    		}
    	}
    
    #endif /* CONFIG_SYS_NAND_HW_ECC */
    
    #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
    static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
    
    #if defined(CONFIG_SYS_NAND_PAGE_2K)
    
    	.eccbytes = 40,
    	.eccpos = {
    		24, 25, 26, 27, 28,
    		29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
    		39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
    		49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
    		59, 60, 61, 62, 63,
    		},
    	.oobfree = {
    		{.offset = 2, .length = 22, },
    	},
    
    #elif defined(CONFIG_SYS_NAND_PAGE_4K)
    	.eccbytes = 80,
    	.eccpos = {
    		48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
    		58, 59, 60, 61, 62, 63,	64, 65, 66, 67,
    		68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
    		78, 79,	80, 81, 82, 83,	84, 85, 86, 87,
    		88, 89, 90, 91, 92, 93,	94, 95, 96, 97,
    		98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
    		108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
    		118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
    		},
    	.oobfree = {
    		{.offset = 2, .length = 46, },
    	},
    
    #endif
    };
    
    static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
    {
    	u32 val;
    
    	switch (mode) {
    	case NAND_ECC_WRITE:
    	case NAND_ECC_READ:
    		/*
    		 * Start a new ECC calculation for reading or writing 512 bytes
    		 * of data.
    		 */
    
    		val = __raw_readl(&davinci_emif_regs->nandfcr);
    
    		val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
    
    		val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
    
    		val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
    		val |= DAVINCI_NANDFCR_4BIT_ECC_START;
    
    		__raw_writel(val, &davinci_emif_regs->nandfcr);
    
    		break;
    	case NAND_ECC_READSYN:
    
    		val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
    
    		break;
    	default:
    		break;
    	}
    }
    
    static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
    {
    
    	int i;
    
    	for (i = 0; i < 4; i++) {
    		ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
    			NAND_4BITECC_MASK;
    	}
    
    
    	return 0;
    }
    
    static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
    					   const uint8_t *dat,
    					   uint8_t *ecc_code)
    {
    
    	unsigned int hw_4ecc[4];
    	unsigned int i;
    
    
    	nand_davinci_4bit_readecc(mtd, hw_4ecc);
    
    	/*Convert 10 bit ecc value to 8 bit */
    
    	for (i = 0; i < 2; i++) {
    		unsigned int hw_ecc_low = hw_4ecc[i * 2];
    		unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
    
    
    		/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
    
    		*ecc_code++ = hw_ecc_low & 0xFF;
    
    
    		/*
    		 * Take 2 bits as LSB bits from val1 (count1=0) or val5
    		 * (count1=1) and 6 bits from val2 (count1=0) or
    		 * val5 (count1=1)
    		 */
    
    		*ecc_code++ =
    		    ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
    
    
    		/*
    		 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
    		 * 4 bits from val3 (count1=0) or val6 (count1=1)
    		 */
    
    		*ecc_code++ =
    		    ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
    
    
    		/*
    		 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
    		 * 2 bits from val4 (count1=0) or  val7 (count1=1)
    		 */
    
    		*ecc_code++ =
    		    ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
    
    
    		/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
    
    		*ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
    
    	return 0;
    }
    
    static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
    					  uint8_t *read_ecc, uint8_t *calc_ecc)
    {
    	int i;
    
    	unsigned int hw_4ecc[4];
    	unsigned int iserror;
    	unsigned short *ecc16;
    
    	unsigned int numerrors, erroraddress, errorvalue;
    	u32 val;
    
    	/*
    	 * Check for an ECC where all bytes are 0xFF.  If this is the case, we
    	 * will assume we are looking at an erased page and we should ignore
    	 * the ECC.
    	 */
    	for (i = 0; i < 10; i++) {
    		if (read_ecc[i] != 0xFF)
    			break;
    	}
    	if (i == 10)
    		return 0;
    
    	/* Convert 8 bit in to 10 bit */
    
    	ecc16 = (unsigned short *)&read_ecc[0];
    
    	/*
    	 * Write the parity values in the NAND Flash 4-bit ECC Load register.
    	 * Write each parity value one at a time starting from 4bit_ecc_val8
    	 * to 4bit_ecc_val1.
    	 */
    
    	/*Take 2 bits from 8th byte and 8 bits from 9th byte */
    
    	__raw_writel(((ecc16[4]) >> 6) & 0x3FF,
    			&davinci_emif_regs->nand4biteccload);
    
    	/* Take 4 bits from 7th byte and 6 bits from 8th byte */
    
    	__raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
    			&davinci_emif_regs->nand4biteccload);
    
    	/* Take 6 bits from 6th byte and 4 bits from 7th byte */
    
    	__raw_writel((ecc16[3] >> 2) & 0x3FF,
    			&davinci_emif_regs->nand4biteccload);
    
    
    	/* Take 8 bits from 5th byte and 2 bits from 6th byte */
    
    	__raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
    			&davinci_emif_regs->nand4biteccload);
    
    	/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
    
    	__raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
    			&davinci_emif_regs->nand4biteccload);
    
    	/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
    
    	__raw_writel(((ecc16[1]) >> 4) & 0x3FF,
    			&davinci_emif_regs->nand4biteccload);
    
    	/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
    
    	__raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
    			&davinci_emif_regs->nand4biteccload);
    
    	/* Take 10 bits from 0th and 1st bytes */
    
    	__raw_writel((ecc16[0]) & 0x3FF,
    			&davinci_emif_regs->nand4biteccload);
    
    
    	/*
    	 * Perform a dummy read to the EMIF Revision Code and Status register.
    	 * This is required to ensure time for syndrome calculation after
    	 * writing the ECC values in previous step.
    	 */
    
    
    	val = __raw_readl(&davinci_emif_regs->nandfsr);
    
    
    	/*
    	 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
    	 * A syndrome value of 0 means no bit errors. If the syndrome is
    	 * non-zero then go further otherwise return.
    	 */
    	nand_davinci_4bit_readecc(mtd, hw_4ecc);
    
    
    	if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
    
    		return 0;
    
    	/*
    	 * Clear any previous address calculation by doing a dummy read of an
    	 * error address register.
    	 */
    
    	val = __raw_readl(&davinci_emif_regs->nanderradd1);
    
    
    	/*
    	 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
    	 * register to 1.
    	 */
    
    	__raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
    			&davinci_emif_regs->nandfcr);
    
    	 * Wait for the corr_state field (bits 8 to 11) in the
    	 * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
    	 * Otherwise ECC calculation has not even begun and the next loop might
    	 * fail because of a false positive!
    	 */
    	i = NAND_TIMEOUT;
    	do {
    		val = __raw_readl(&davinci_emif_regs->nandfsr);
    		val &= 0xc00;
    		i--;
    	} while ((i > 0) && !val);
    
    	/*
    	 * Wait for the corr_state field (bits 8 to 11) in the
    
    	 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
    	 */
    	i = NAND_TIMEOUT;
    	do {
    
    		val = __raw_readl(&davinci_emif_regs->nandfsr);
    
    		val &= 0xc00;
    		i--;
    	} while ((i > 0) && val);
    
    
    	iserror = __raw_readl(&davinci_emif_regs->nandfsr);
    
    	iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
    	iserror = iserror >> 8;
    
    	/*
    	 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
    	 * corrected (five or more errors).  The number of errors
    	 * calculated (err_num field) differs from the number of errors
    	 * searched.  ECC_STATE_ERR_CORR_COMP_P (0x2) means error
    	 * correction complete (errors on bit 8 or 9).
    	 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
    	 * complete (error exists).
    	 */
    
    	if (iserror == ECC_STATE_NO_ERR) {
    
    		val = __raw_readl(&davinci_emif_regs->nanderrval1);
    
    		return 0;
    	} else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
    
    		val = __raw_readl(&davinci_emif_regs->nanderrval1);
    
    	numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
    			& 0x3) + 1;
    
    
    	/* Read the error address, error value and correct */
    	for (i = 0; i < numerrors; i++) {
    		if (i > 1) {
    			erroraddress =
    
    			    ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
    
    			      (16 * (i & 1))) & 0x3FF);
    			erroraddress = ((512 + 7) - erroraddress);
    			errorvalue =
    
    			    ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
    
    			      (16 * (i & 1))) & 0xFF);
    		} else {
    			erroraddress =
    
    			    ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
    
    			      (16 * (i & 1))) & 0x3FF);
    			erroraddress = ((512 + 7) - erroraddress);
    			errorvalue =
    
    			    ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
    
    			      (16 * (i & 1))) & 0xFF);
    		}
    		/* xor the corrupt data with error value */
    		if (erroraddress < 512)
    			dat[erroraddress] ^= errorvalue;
    	}
    
    	return numerrors;
    }
    
    #endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
    
    static int nand_davinci_dev_ready(struct mtd_info *mtd)
    {
    
    	return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
    
    }
    
    static void nand_flash_init(void)
    {
    
    	/* This is for DM6446 EVM and *very* similar.  DO NOT GROW THIS!
    	 * Instead, have your board_init() set EMIF timings, based on its
    	 * knowledge of the clocks and what devices are hooked up ... and
    	 * don't even do that unless no UBL handled it.
    	 */
    
    #ifdef CONFIG_SOC_DM644X
    
    	u_int32_t	acfg1 = 0x3ffffffc;
    
    	/*------------------------------------------------------------------*
    	 *  NAND FLASH CHIP TIMEOUT @ 459 MHz                               *
    	 *                                                                  *
    	 *  AEMIF.CLK freq   = PLL1/6 = 459/6 = 76.5 MHz                    *
    	 *  AEMIF.CLK period = 1/76.5 MHz = 13.1 ns                         *
    	 *                                                                  *
    	 *------------------------------------------------------------------*/
    	 acfg1 = 0
    
    		| (0 << 31)	/* selectStrobe */
    		| (0 << 30)	/* extWait */
    		| (1 << 26)	/* writeSetup	10 ns */
    		| (3 << 20)	/* writeStrobe	40 ns */
    		| (1 << 17)	/* writeHold	10 ns */
    		| (1 << 13)	/* readSetup	10 ns */
    		| (5 << 7)	/* readStrobe	60 ns */
    		| (1 << 4)	/* readHold	10 ns */
    		| (3 << 2)	/* turnAround	?? ns */
    		| (0 << 0)	/* asyncSize	8-bit bus */
    
    	__raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */
    
    	/* NAND flash on CS2 */
    	__raw_writel(0x00000101, &davinci_emif_regs->nandfcr);
    
    void davinci_nand_init(struct nand_chip *nand)
    
    {
    	nand->chip_delay  = 0;
    
    #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
    
    	nand->options	  |= NAND_USE_FLASH_BBT;
    
    #ifdef CONFIG_SYS_NAND_HW_ECC
    
    William Juul's avatar
    William Juul committed
    	nand->ecc.mode = NAND_ECC_HW;
    
    	nand->ecc.size = 512;
    	nand->ecc.bytes = 3;
    
    	nand->ecc.calculate = nand_davinci_calculate_ecc;
    	nand->ecc.correct  = nand_davinci_correct_data;
    
    William Juul's avatar
    William Juul committed
    	nand->ecc.hwctl  = nand_davinci_enable_hwecc;
    
    William Juul's avatar
    William Juul committed
    	nand->ecc.mode = NAND_ECC_SOFT;
    
    #endif /* CONFIG_SYS_NAND_HW_ECC */
    
    #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
    	nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
    	nand->ecc.size = 512;
    	nand->ecc.bytes = 10;
    	nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
    	nand->ecc.correct = nand_davinci_4bit_correct_data;
    	nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
    	nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
    #endif
    
    	/* Set address of hardware control function */
    
    	nand->cmd_ctrl = nand_davinci_hwcontrol;
    
    	nand->read_buf = nand_davinci_read_buf;
    	nand->write_buf = nand_davinci_write_buf;
    
    
    	nand->dev_ready = nand_davinci_dev_ready;
    
    	nand_flash_init();
    
    int board_nand_init(struct nand_chip *chip) __attribute__((weak));
    
    int board_nand_init(struct nand_chip *chip)
    {
    	davinci_nand_init(chip);
    	return 0;