Skip to content
Snippets Groups Projects
clock_manager.c 16.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     *  Copyright (C) 2013 Altera Corporation <www.altera.com>
     *
     * SPDX-License-Identifier:	GPL-2.0+
     */
    
    #include <common.h>
    #include <asm/io.h>
    #include <asm/arch/clock_manager.h>
    
    
    static const struct socfpga_clock_manager *clock_manager_base =
    
    	(struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS;
    
    static void cm_wait_for_lock(uint32_t mask)
    
    {
    	register uint32_t inter_val;
    
    	uint32_t retry = 0;
    
    	do {
    		inter_val = readl(&clock_manager_base->inter) & mask;
    
    		if (inter_val == mask)
    			retry++;
    		else
    			retry = 0;
    		if (retry >= 10)
    			break;
    	} while (1);
    
    }
    
    /* function to poll in the fsm busy bit */
    
    static void cm_wait_for_fsm(void)
    
    {
    	while (readl(&clock_manager_base->stat) & CLKMGR_STAT_BUSY)
    		;
    }
    
    /*
     * function to write the bypass register which requires a poll of the
     * busy bit
     */
    
    static void cm_write_bypass(uint32_t val)
    
    {
    	writel(val, &clock_manager_base->bypass);
    	cm_wait_for_fsm();
    }
    
    /* function to write the ctrl register which requires a poll of the busy bit */
    
    static void cm_write_ctrl(uint32_t val)
    
    {
    	writel(val, &clock_manager_base->ctrl);
    	cm_wait_for_fsm();
    }
    
    /* function to write a clock register that has phase information */
    
    static void cm_write_with_phase(uint32_t value,
    				uint32_t reg_address, uint32_t mask)
    
    {
    	/* poll until phase is zero */
    	while (readl(reg_address) & mask)
    		;
    
    	writel(value, reg_address);
    
    	while (readl(reg_address) & mask)
    		;
    }
    
    /*
     * Setup clocks while making no assumptions about previous state of the clocks.
     *
     * Start by being paranoid and gate all sw managed clocks
     * Put all plls in bypass
     * Put all plls VCO registers back to reset value (bandgap power down).
     * Put peripheral and main pll src to reset value to avoid glitch.
     * Delay 5 us.
     * Deassert bandgap power down and set numerator and denominator
     * Start 7 us timer.
     * set internal dividers
     * Wait for 7 us timer.
     * Enable plls
     * Set external dividers while plls are locking
     * Wait for pll lock
     * Assert/deassert outreset all.
     * Take all pll's out of bypass
     * Clear safe mode
     * set source main and peripheral clocks
     * Ungate clocks
     */
    
    void cm_basic_init(const cm_config_t *cfg)
    {
    	uint32_t start, timeout;
    
    	/* Start by being paranoid and gate all sw managed clocks */
    
    	/*
    	 * We need to disable nandclk
    	 * and then do another apb access before disabling
    	 * gatting off the rest of the periperal clocks.
    	 */
    	writel(~CLKMGR_PERPLLGRP_EN_NANDCLK_MASK &
    
    		readl(&clock_manager_base->per_pll.en),
    		&clock_manager_base->per_pll.en);
    
    
    	/* DO NOT GATE OFF DEBUG CLOCKS & BRIDGE CLOCKS */
    	writel(CLKMGR_MAINPLLGRP_EN_DBGTIMERCLK_MASK |
    		CLKMGR_MAINPLLGRP_EN_DBGTRACECLK_MASK |
    		CLKMGR_MAINPLLGRP_EN_DBGCLK_MASK |
    		CLKMGR_MAINPLLGRP_EN_DBGATCLK_MASK |
    		CLKMGR_MAINPLLGRP_EN_S2FUSER0CLK_MASK |
    		CLKMGR_MAINPLLGRP_EN_L4MPCLK_MASK,
    
    		&clock_manager_base->main_pll.en);
    
    	writel(0, &clock_manager_base->sdr_pll.en);
    
    
    	/* now we can gate off the rest of the peripheral clocks */
    
    	writel(0, &clock_manager_base->per_pll.en);
    
    
    	/* Put all plls in bypass */
    
    	cm_write_bypass(CLKMGR_BYPASS_PERPLL | CLKMGR_BYPASS_SDRPLL |
    			CLKMGR_BYPASS_MAINPLL);
    
    	/* Put all plls VCO registers back to reset value. */
    	writel(CLKMGR_MAINPLLGRP_VCO_RESET_VALUE &
    	       ~CLKMGR_MAINPLLGRP_VCO_REGEXTSEL_MASK,
    
    	       &clock_manager_base->main_pll.vco);
    
    	writel(CLKMGR_PERPLLGRP_VCO_RESET_VALUE &
    	       ~CLKMGR_PERPLLGRP_VCO_REGEXTSEL_MASK,
    
    	       &clock_manager_base->per_pll.vco);
    
    	writel(CLKMGR_SDRPLLGRP_VCO_RESET_VALUE &
    	       ~CLKMGR_SDRPLLGRP_VCO_REGEXTSEL_MASK,
    
    	       &clock_manager_base->sdr_pll.vco);
    
    
    	/*
    	 * The clocks to the flash devices and the L4_MAIN clocks can
    	 * glitch when coming out of safe mode if their source values
    	 * are different from their reset value.  So the trick it to
    	 * put them back to their reset state, and change input
    	 * after exiting safe mode but before ungating the clocks.
    	 */
    	writel(CLKMGR_PERPLLGRP_SRC_RESET_VALUE,
    
    	       &clock_manager_base->per_pll.src);
    
    	writel(CLKMGR_MAINPLLGRP_L4SRC_RESET_VALUE,
    
    	       &clock_manager_base->main_pll.l4src);
    
    
    	/* read back for the required 5 us delay. */
    
    	readl(&clock_manager_base->main_pll.vco);
    	readl(&clock_manager_base->per_pll.vco);
    	readl(&clock_manager_base->sdr_pll.vco);
    
    
    
    	/*
    	 * We made sure bgpwr down was assert for 5 us. Now deassert BG PWR DN
    	 * with numerator and denominator.
    	 */
    
    	writel(cfg->main_vco_base, &clock_manager_base->main_pll.vco);
    	writel(cfg->peri_vco_base, &clock_manager_base->per_pll.vco);
    	writel(cfg->sdram_vco_base, &clock_manager_base->sdr_pll.vco);
    
    
    	/*
    	 * Time starts here
    	 * must wait 7 us from BGPWRDN_SET(0) to VCO_ENABLE_SET(1)
    	 */
    	start = get_timer(0);
    	/* timeout in unit of us as CONFIG_SYS_HZ = 1000*1000 */
    	timeout = 7;
    
    	/* main mpu */
    
    	writel(cfg->mpuclk, &clock_manager_base->main_pll.mpuclk);
    
    
    	/* main main clock */
    
    	writel(cfg->mainclk, &clock_manager_base->main_pll.mainclk);
    
    
    	/* main for dbg */
    
    	writel(cfg->dbgatclk, &clock_manager_base->main_pll.dbgatclk);
    
    
    	/* main for cfgs2fuser0clk */
    	writel(cfg->cfg2fuser0clk,
    
    	       &clock_manager_base->main_pll.cfgs2fuser0clk);
    
    
    	/* Peri emac0 50 MHz default to RMII */
    
    	writel(cfg->emac0clk, &clock_manager_base->per_pll.emac0clk);
    
    
    	/* Peri emac1 50 MHz default to RMII */
    
    	writel(cfg->emac1clk, &clock_manager_base->per_pll.emac1clk);
    
    
    	/* Peri QSPI */
    
    	writel(cfg->mainqspiclk, &clock_manager_base->main_pll.mainqspiclk);
    
    	writel(cfg->perqspiclk, &clock_manager_base->per_pll.perqspiclk);
    
    
    	/* Peri pernandsdmmcclk */
    
    	writel(cfg->mainnandsdmmcclk,
    	       &clock_manager_base->main_pll.mainnandsdmmcclk);
    
    
    	writel(cfg->pernandsdmmcclk,
    
    	       &clock_manager_base->per_pll.pernandsdmmcclk);
    
    
    	/* Peri perbaseclk */
    
    	writel(cfg->perbaseclk, &clock_manager_base->per_pll.perbaseclk);
    
    
    	/* Peri s2fuser1clk */
    
    	writel(cfg->s2fuser1clk, &clock_manager_base->per_pll.s2fuser1clk);
    
    
    	/* 7 us must have elapsed before we can enable the VCO */
    	while (get_timer(start) < timeout)
    		;
    
    	/* Enable vco */
    	/* main pll vco */
    
    	writel(cfg->main_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
    
    	       &clock_manager_base->main_pll.vco);
    
    
    	/* periferal pll */
    
    	writel(cfg->peri_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
    
    	       &clock_manager_base->per_pll.vco);
    
    
    	/* sdram pll vco */
    
    	writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
    	       &clock_manager_base->sdr_pll.vco);
    
    
    	/* L3 MP and L3 SP */
    
    	writel(cfg->maindiv, &clock_manager_base->main_pll.maindiv);
    
    	writel(cfg->dbgdiv, &clock_manager_base->main_pll.dbgdiv);
    
    	writel(cfg->tracediv, &clock_manager_base->main_pll.tracediv);
    
    
    	/* L4 MP, L4 SP, can0, and can1 */
    
    	writel(cfg->perdiv, &clock_manager_base->per_pll.div);
    
    	writel(cfg->gpiodiv, &clock_manager_base->per_pll.gpiodiv);
    
    
    #define LOCKED_MASK \
    	(CLKMGR_INTER_SDRPLLLOCKED_MASK  | \
    	CLKMGR_INTER_PERPLLLOCKED_MASK  | \
    	CLKMGR_INTER_MAINPLLLOCKED_MASK)
    
    	cm_wait_for_lock(LOCKED_MASK);
    
    	/* write the sdram clock counters before toggling outreset all */
    	writel(cfg->ddrdqsclk & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK,
    
    	       &clock_manager_base->sdr_pll.ddrdqsclk);
    
    
    	writel(cfg->ddr2xdqsclk & CLKMGR_SDRPLLGRP_DDR2XDQSCLK_CNT_MASK,
    
    	       &clock_manager_base->sdr_pll.ddr2xdqsclk);
    
    
    	writel(cfg->ddrdqclk & CLKMGR_SDRPLLGRP_DDRDQCLK_CNT_MASK,
    
    	       &clock_manager_base->sdr_pll.ddrdqclk);
    
    
    	writel(cfg->s2fuser2clk & CLKMGR_SDRPLLGRP_S2FUSER2CLK_CNT_MASK,
    
    	       &clock_manager_base->sdr_pll.s2fuser2clk);
    
    
    	/*
    	 * after locking, but before taking out of bypass
    	 * assert/deassert outresetall
    	 */
    
    	uint32_t mainvco = readl(&clock_manager_base->main_pll.vco);
    
    
    	/* assert main outresetall */
    	writel(mainvco | CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
    
    	       &clock_manager_base->main_pll.vco);
    
    	uint32_t periphvco = readl(&clock_manager_base->per_pll.vco);
    
    
    	/* assert pheriph outresetall */
    	writel(periphvco | CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
    
    	       &clock_manager_base->per_pll.vco);
    
    
    	/* assert sdram outresetall */
    
    	writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN|
    		CLKMGR_SDRPLLGRP_VCO_OUTRESETALL,
    
    		&clock_manager_base->sdr_pll.vco);
    
    
    	/* deassert main outresetall */
    	writel(mainvco & ~CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
    
    	       &clock_manager_base->main_pll.vco);
    
    
    	/* deassert pheriph outresetall */
    	writel(periphvco & ~CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
    
    	       &clock_manager_base->per_pll.vco);
    
    
    	/* deassert sdram outresetall */
    
    	writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
    	       &clock_manager_base->sdr_pll.vco);
    
    
    	/*
    	 * now that we've toggled outreset all, all the clocks
    	 * are aligned nicely; so we can change any phase.
    	 */
    	cm_write_with_phase(cfg->ddrdqsclk,
    
    			    (uint32_t)&clock_manager_base->sdr_pll.ddrdqsclk,
    
    			    CLKMGR_SDRPLLGRP_DDRDQSCLK_PHASE_MASK);
    
    	/* SDRAM DDR2XDQSCLK */
    	cm_write_with_phase(cfg->ddr2xdqsclk,
    
    			    (uint32_t)&clock_manager_base->sdr_pll.ddr2xdqsclk,
    
    			    CLKMGR_SDRPLLGRP_DDR2XDQSCLK_PHASE_MASK);
    
    	cm_write_with_phase(cfg->ddrdqclk,
    
    			    (uint32_t)&clock_manager_base->sdr_pll.ddrdqclk,
    
    			    CLKMGR_SDRPLLGRP_DDRDQCLK_PHASE_MASK);
    
    	cm_write_with_phase(cfg->s2fuser2clk,
    
    			    (uint32_t)&clock_manager_base->sdr_pll.s2fuser2clk,
    
    			    CLKMGR_SDRPLLGRP_S2FUSER2CLK_PHASE_MASK);
    
    	/* Take all three PLLs out of bypass when safe mode is cleared. */
    
    	cm_write_bypass(0);
    
    
    	/* clear safe mode */
    
    	cm_write_ctrl(readl(&clock_manager_base->ctrl) | CLKMGR_CTRL_SAFEMODE);
    
    
    	/*
    	 * now that safe mode is clear with clocks gated
    	 * it safe to change the source mux for the flashes the the L4_MAIN
    	 */
    
    	writel(cfg->persrc, &clock_manager_base->per_pll.src);
    	writel(cfg->l4src, &clock_manager_base->main_pll.l4src);
    
    
    	/* Now ungate non-hw-managed clocks */
    
    	writel(~0, &clock_manager_base->main_pll.en);
    	writel(~0, &clock_manager_base->per_pll.en);
    	writel(~0, &clock_manager_base->sdr_pll.en);
    
    
    	/* Clear the loss of lock bits (write 1 to clear) */
    	writel(CLKMGR_INTER_SDRPLLLOST_MASK | CLKMGR_INTER_PERPLLLOST_MASK |
    	       CLKMGR_INTER_MAINPLLLOST_MASK,
    	       &clock_manager_base->inter);
    
    static unsigned int cm_get_main_vco_clk_hz(void)
    
    {
    	uint32_t reg, clock;
    
    	/* get the main VCO clock */
    	reg = readl(&clock_manager_base->main_pll.vco);
    
    	clock = CONFIG_HPS_CLK_OSC1_HZ;
    	clock /= ((reg & CLKMGR_MAINPLLGRP_VCO_DENOM_MASK) >>
    		  CLKMGR_MAINPLLGRP_VCO_DENOM_OFFSET) + 1;
    	clock *= ((reg & CLKMGR_MAINPLLGRP_VCO_NUMER_MASK) >>
    		  CLKMGR_MAINPLLGRP_VCO_NUMER_OFFSET) + 1;
    
    	return clock;
    }
    
    static unsigned int cm_get_per_vco_clk_hz(void)
    {
    	uint32_t reg, clock = 0;
    
    	/* identify PER PLL clock source */
    	reg = readl(&clock_manager_base->per_pll.vco);
    
    	reg = (reg & CLKMGR_PERPLLGRP_VCO_SSRC_MASK) >>
    	      CLKMGR_PERPLLGRP_VCO_SSRC_OFFSET;
    
    	if (reg == CLKMGR_VCO_SSRC_EOSC1)
    		clock = CONFIG_HPS_CLK_OSC1_HZ;
    	else if (reg == CLKMGR_VCO_SSRC_EOSC2)
    		clock = CONFIG_HPS_CLK_OSC2_HZ;
    	else if (reg == CLKMGR_VCO_SSRC_F2S)
    		clock = CONFIG_HPS_CLK_F2S_PER_REF_HZ;
    
    	/* get the PER VCO clock */
    	reg = readl(&clock_manager_base->per_pll.vco);
    
    	clock /= ((reg & CLKMGR_PERPLLGRP_VCO_DENOM_MASK) >>
    		  CLKMGR_PERPLLGRP_VCO_DENOM_OFFSET) + 1;
    	clock *= ((reg & CLKMGR_PERPLLGRP_VCO_NUMER_MASK) >>
    		  CLKMGR_PERPLLGRP_VCO_NUMER_OFFSET) + 1;
    
    
    	return clock;
    }
    
    unsigned long cm_get_mpu_clk_hz(void)
    {
    	uint32_t reg, clock;
    
    	clock = cm_get_main_vco_clk_hz();
    
    
    	/* get the MPU clock */
    	reg = readl(&clock_manager_base->altera.mpuclk);
    	clock /= (reg + 1);
    	reg = readl(&clock_manager_base->main_pll.mpuclk);
    	clock /= (reg + 1);
    	return clock;
    }
    
    unsigned long cm_get_sdram_clk_hz(void)
    {
    	uint32_t reg, clock = 0;
    
    	/* identify SDRAM PLL clock source */
    	reg = readl(&clock_manager_base->sdr_pll.vco);
    
    	reg = (reg & CLKMGR_SDRPLLGRP_VCO_SSRC_MASK) >>
    	      CLKMGR_SDRPLLGRP_VCO_SSRC_OFFSET;
    
    	if (reg == CLKMGR_VCO_SSRC_EOSC1)
    		clock = CONFIG_HPS_CLK_OSC1_HZ;
    	else if (reg == CLKMGR_VCO_SSRC_EOSC2)
    		clock = CONFIG_HPS_CLK_OSC2_HZ;
    	else if (reg == CLKMGR_VCO_SSRC_F2S)
    		clock = CONFIG_HPS_CLK_F2S_SDR_REF_HZ;
    
    	/* get the SDRAM VCO clock */
    	reg = readl(&clock_manager_base->sdr_pll.vco);
    
    	clock /= ((reg & CLKMGR_SDRPLLGRP_VCO_DENOM_MASK) >>
    		  CLKMGR_SDRPLLGRP_VCO_DENOM_OFFSET) + 1;
    	clock *= ((reg & CLKMGR_SDRPLLGRP_VCO_NUMER_MASK) >>
    		  CLKMGR_SDRPLLGRP_VCO_NUMER_OFFSET) + 1;
    
    
    	/* get the SDRAM (DDR_DQS) clock */
    	reg = readl(&clock_manager_base->sdr_pll.ddrdqsclk);
    
    	reg = (reg & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK) >>
    	      CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_OFFSET;
    
    	clock /= (reg + 1);
    
    	return clock;
    }
    
    unsigned int cm_get_l4_sp_clk_hz(void)
    {
    	uint32_t reg, clock = 0;
    
    	/* identify the source of L4 SP clock */
    	reg = readl(&clock_manager_base->main_pll.l4src);
    
    	reg = (reg & CLKMGR_MAINPLLGRP_L4SRC_L4SP) >>
    	      CLKMGR_MAINPLLGRP_L4SRC_L4SP_OFFSET;
    
    
    	if (reg == CLKMGR_L4_SP_CLK_SRC_MAINPLL) {
    
    		clock = cm_get_main_vco_clk_hz();
    
    
    		/* get the clock prior L4 SP divider (main clk) */
    		reg = readl(&clock_manager_base->altera.mainclk);
    		clock /= (reg + 1);
    		reg = readl(&clock_manager_base->main_pll.mainclk);
    		clock /= (reg + 1);
    	} else if (reg == CLKMGR_L4_SP_CLK_SRC_PERPLL) {
    
    		clock = cm_get_per_vco_clk_hz();
    
    
    		/* get the clock prior L4 SP divider (periph_base_clk) */
    		reg = readl(&clock_manager_base->per_pll.perbaseclk);
    		clock /= (reg + 1);
    	}
    
    	/* get the L4 SP clock which supplied to UART */
    	reg = readl(&clock_manager_base->main_pll.maindiv);
    
    	reg = (reg & CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_MASK) >>
    	      CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_OFFSET;
    
    	clock = clock / (1 << reg);
    
    	return clock;
    }
    
    unsigned int cm_get_mmc_controller_clk_hz(void)
    {
    	uint32_t reg, clock = 0;
    
    	/* identify the source of MMC clock */
    	reg = readl(&clock_manager_base->per_pll.src);
    
    	reg = (reg & CLKMGR_PERPLLGRP_SRC_SDMMC_MASK) >>
    	      CLKMGR_PERPLLGRP_SRC_SDMMC_OFFSET;
    
    
    	if (reg == CLKMGR_SDMMC_CLK_SRC_F2S) {
    		clock = CONFIG_HPS_CLK_F2S_PER_REF_HZ;
    	} else if (reg == CLKMGR_SDMMC_CLK_SRC_MAIN) {
    
    		clock = cm_get_main_vco_clk_hz();
    
    
    		/* get the SDMMC clock */
    		reg = readl(&clock_manager_base->main_pll.mainnandsdmmcclk);
    		clock /= (reg + 1);
    	} else if (reg == CLKMGR_SDMMC_CLK_SRC_PER) {
    
    		clock = cm_get_per_vco_clk_hz();
    
    
    		/* get the SDMMC clock */
    		reg = readl(&clock_manager_base->per_pll.pernandsdmmcclk);
    		clock /= (reg + 1);
    	}
    
    	/* further divide by 4 as we have fixed divider at wrapper */
    	clock /= 4;
    	return clock;
    }
    
    unsigned int cm_get_qspi_controller_clk_hz(void)
    {
    	uint32_t reg, clock = 0;
    
    	/* identify the source of QSPI clock */
    	reg = readl(&clock_manager_base->per_pll.src);
    
    	reg = (reg & CLKMGR_PERPLLGRP_SRC_QSPI_MASK) >>
    	      CLKMGR_PERPLLGRP_SRC_QSPI_OFFSET;
    
    
    	if (reg == CLKMGR_QSPI_CLK_SRC_F2S) {
    		clock = CONFIG_HPS_CLK_F2S_PER_REF_HZ;
    	} else if (reg == CLKMGR_QSPI_CLK_SRC_MAIN) {
    
    		clock = cm_get_main_vco_clk_hz();
    
    
    		/* get the qspi clock */
    		reg = readl(&clock_manager_base->main_pll.mainqspiclk);
    		clock /= (reg + 1);
    	} else if (reg == CLKMGR_QSPI_CLK_SRC_PER) {
    
    		clock = cm_get_per_vco_clk_hz();
    
    
    		/* get the qspi clock */
    		reg = readl(&clock_manager_base->per_pll.perqspiclk);
    		clock /= (reg + 1);
    	}
    
    	return clock;
    }
    
    
    unsigned int cm_get_spi_controller_clk_hz(void)
    {
    	uint32_t reg, clock = 0;
    
    	clock = cm_get_per_vco_clk_hz();
    
    	/* get the clock prior L4 SP divider (periph_base_clk) */
    	reg = readl(&clock_manager_base->per_pll.perbaseclk);
    	clock /= (reg + 1);
    
    	return clock;
    }
    
    
    static void cm_print_clock_quick_summary(void)
    {
    	printf("MPU       %10ld kHz\n", cm_get_mpu_clk_hz() / 1000);
    	printf("DDR       %10ld kHz\n", cm_get_sdram_clk_hz() / 1000);
    	printf("EOSC1       %8d kHz\n", CONFIG_HPS_CLK_OSC1_HZ / 1000);
    	printf("EOSC2       %8d kHz\n", CONFIG_HPS_CLK_OSC2_HZ / 1000);
    	printf("F2S_SDR_REF %8d kHz\n", CONFIG_HPS_CLK_F2S_SDR_REF_HZ / 1000);
    	printf("F2S_PER_REF %8d kHz\n", CONFIG_HPS_CLK_F2S_PER_REF_HZ / 1000);
    	printf("MMC         %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000);
    	printf("QSPI        %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000);
    	printf("UART        %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000);
    
    	printf("SPI         %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000);
    
    }
    
    int set_cpu_clk_info(void)
    {
    	/* Calculate the clock frequencies required for drivers */
    	cm_get_l4_sp_clk_hz();
    	cm_get_mmc_controller_clk_hz();
    
    	gd->bd->bi_arm_freq = cm_get_mpu_clk_hz() / 1000000;
    	gd->bd->bi_dsp_freq = 0;
    	gd->bd->bi_ddr_freq = cm_get_sdram_clk_hz() / 1000000;
    
    	return 0;
    }
    
    int do_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
    {
    	cm_print_clock_quick_summary();
    	return 0;
    }
    
    U_BOOT_CMD(
    	clocks,	CONFIG_SYS_MAXARGS, 1, do_showclocks,
    	"display clocks",
    	""
    );