Newer
Older
#include <stdio.h>
#include "platform.h"
#include "xparameters.h"
#include "adau.h"
#include "xiicps.h"
#include "xi2stx.h"
#include "xi2srx.h"
#include "xaudioformatter.h"
#include "mntzorro.h"
#include "sleep.h"
#include "stdlib.h"
#include "ax.h"
#include "memorymap.h"
#include "xtime_l.h"
#include "math.h"
#include "ax.h"
#define IIC2_DEVICE_ID XPAR_XIICPS_1_DEVICE_ID
#define IIC2_SCLK_RATE 100000
#define ADAU_I2C_ADDR 0x68
XIicPs Iic2;
XI2s_Tx i2s;
XI2s_Rx i2srx;
XAudioFormatter audio_formatter;
XAudioFormatter audio_formatter_rx;
static uint8_t* audio_tx_buffer = (uint8_t*)AUDIO_TX_BUFFER_ADDRESS;
static uint8_t* audio_rx_buffer = (uint8_t*)AUDIO_RX_BUFFER_ADDRESS;
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
int adau_write16(u8 i2c_addr, u16 addr, u16 value) {
XIicPs* iic = &Iic2;
int status;
u8 buffer[4];
buffer[0] = addr>>8;
buffer[1] = addr&0xff;
buffer[2] = value>>8;
buffer[3] = value&0xff;
int timeout = 0;
while (XIicPs_BusIsBusy(iic)) {
usleep(1);
timeout++;
if (timeout>10000) {
printf("ADAU I2C write16 timeout.\n");
return -1;
}
}
status = XIicPs_MasterSendPolled(iic, buffer, 4, i2c_addr);
return status;
}
int adau_write24(u8 i2c_addr, u16 addr, u32 value) {
XIicPs* iic = &Iic2;
int status;
u8 buffer[5];
buffer[0] = addr>>8;
buffer[1] = addr&0xff;
buffer[2] = (value>>16)&0xff;
buffer[3] = (value>>8)&0xff;
buffer[4] = value&0xff;
int timeout = 0;
while (XIicPs_BusIsBusy(iic)) {
usleep(1);
timeout++;
if (timeout>10000) {
printf("ADAU I2C write24 timeout.\n");
return -1;
}
}
status = XIicPs_MasterSendPolled(iic, buffer, 5, i2c_addr);
return status;
}
// for storing 40 bit program words
int adau_write40(u8 i2c_addr, u16 addr, u8* data) {
XIicPs* iic = &Iic2;
int status;
u8 buffer[7];
buffer[0] = addr>>8;
buffer[1] = addr&0xff;
buffer[2] = data[0];
buffer[3] = data[1];
buffer[4] = data[2];
buffer[5] = data[3];
buffer[6] = data[4];
int timeout = 0;
while (XIicPs_BusIsBusy(iic)) {
usleep(1);
timeout++;
if (timeout>10000) {
printf("ADAU I2C write40 timeout.\n");
return -1;
}
}
status = XIicPs_MasterSendPolled(iic, buffer, 2+5, i2c_addr);
return status;
}
// for storing 32 bit parameter words
int adau_write32(u8 i2c_addr, u16 addr, u8* data) {
XIicPs* iic = &Iic2;
int status;
u8 buffer[6];
buffer[0] = addr>>8;
buffer[1] = addr&0xff;
buffer[2] = data[0];
buffer[3] = data[1];
buffer[4] = data[2];
buffer[5] = data[3];
int timeout = 0;
while (XIicPs_BusIsBusy(iic)) {
usleep(1);
timeout++;
if (timeout>10000) {
printf("ADAU I2C write40 timeout.\n");
return -1;
}
}
status = XIicPs_MasterSendPolled(iic, buffer, 2+4, i2c_addr);
return status;
}
int adau_read16(u8 i2c_addr, u16 addr, u8* buffer) {
XIicPs* iic = &Iic2;
int status1;
u8 abuffer[2];
abuffer[0] = addr>>8;
abuffer[1] = addr&0xff;
XIicPs_SetOptions(iic, XIICPS_REP_START_OPTION);
int timeout = 0;
while (XIicPs_BusIsBusy(iic)) {
usleep(1);
timeout++;
if (timeout>10000) {
printf("ADAU I2C read16a timeout.\n");
return -1;
}
}
status1 = XIicPs_MasterSendPolled(iic, abuffer, 2, i2c_addr);
XIicPs_ClearOptions(iic, XIICPS_REP_START_OPTION);
XIicPs_MasterRecvPolled(iic, buffer, 2, i2c_addr);
timeout = 0;
while (XIicPs_BusIsBusy(iic)) {
usleep(1);
timeout++;
if (timeout>10000) {
printf("ADAU I2C read16b timeout.\n");
return -1;
}
}
return status1;
}
int adau_read24(u8 i2c_addr, u16 addr, u8* buffer) {
XIicPs* iic = &Iic2;
int status1;
u8 abuffer[2];
abuffer[0] = addr>>8;
abuffer[1] = addr&0xff;
XIicPs_SetOptions(iic, XIICPS_REP_START_OPTION);
while (XIicPs_BusIsBusy(iic)) {};
status1 = XIicPs_MasterSendPolled(iic, abuffer, 2, i2c_addr);
XIicPs_ClearOptions(iic, XIICPS_REP_START_OPTION);
XIicPs_MasterRecvPolled(iic, buffer, 3, i2c_addr);
int timeout = 0;
while (XIicPs_BusIsBusy(iic)) {
usleep(1);
timeout++;
if (timeout>10000) {
printf("ADAU I2C read24 timeout.\n");
return -1;
}
}
return status1;
}
void audio_program_adau_params(u8* params, u32 param_len) {
for (u32 i = 0; i < param_len; i+=4) {
int res = adau_write32(0x34, 0+i/4, ¶ms[i]);
if (res != 0) printf("[adau_write32] %lx: %d\n", i, res);
}
}
void audio_program_adau(u8* program, u32 program_len) {
for (u32 i = 0; i < program_len; i+=5) {
int res = adau_write40(0x34, 1024+i/5, &program[i]);
if (res != 0) printf("[adau_write40] %lx: %d\n", i, res);
}
}
void audio_init_i2s() {
XI2stx_Config* i2s_config = XI2s_Tx_LookupConfig(XPAR_XI2STX_0_DEVICE_ID);
int status = XI2s_Tx_CfgInitialize(&i2s, i2s_config, i2s_config->BaseAddress);
printf("[adau] I2S_TX cfg status: %d\n", status);
printf("[adau] I2S Dwidth: %d\n", i2s.Config.DWidth);
printf("[adau] I2S MaxNumChannels: %d\n", i2s.Config.MaxNumChannels);
XI2s_Tx_JustifyEnable(&i2s, 0);
XAudioFormatter_Config* af_config = XAudioFormatter_LookupConfig(XPAR_XAUDIOFORMATTER_0_DEVICE_ID);
audio_formatter.BaseAddress = af_config->BaseAddress;
status = XAudioFormatter_CfgInitialize(&audio_formatter, af_config);
//printf("[adau] AudioFormatter cfg status: %d\n", status);
// reset the goddamn register
XAudioFormatter_WriteReg(audio_formatter.BaseAddress,
XAUD_FORMATTER_CTRL + XAUD_FORMATTER_MM2S_OFFSET, 0);
XAudioFormatterHwParams af_params;
af_params.buf_addr = (u32)audio_tx_buffer;
af_params.bits_per_sample = BIT_DEPTH_16;
af_params.periods = AUDIO_NUM_PERIODS; // 1 second = 192000 bytes
af_params.active_ch = 2;
// must be multiple of 32*channels = 64
af_params.bytes_per_period = AUDIO_BYTES_PER_PERIOD;
XAudioFormatterSetFsMultiplier(&audio_formatter, 48000*256, 48000); // mclk = 256 * Fs // this doesn't really seem to change anything?!
XAudioFormatterSetHwParams(&audio_formatter, &af_params);
XAudioFormatter_InterruptDisable(&audio_formatter, 1<<14); // timeout
XAudioFormatter_InterruptDisable(&audio_formatter, 1<<13); // IOC
// set up i2s receiver
XAudioFormatter_Config* af_config_rx = XAudioFormatter_LookupConfig(XPAR_XAUDIOFORMATTER_1_DEVICE_ID);
audio_formatter_rx.BaseAddress = af_config_rx->BaseAddress;
status = XAudioFormatter_CfgInitialize(&audio_formatter_rx, af_config_rx);
//printf("[adau] AudioFormatter RX cfg status: %d\n", status);
XAudioFormatter_WriteReg(audio_formatter_rx.BaseAddress,
XAUD_FORMATTER_CTRL + XAUD_FORMATTER_S2MM_OFFSET, 0);
XAudioFormatterHwParams afrx_params;
afrx_params.buf_addr = (u32)audio_rx_buffer;
afrx_params.bits_per_sample = BIT_DEPTH_16;
afrx_params.periods = AUDIO_NUM_PERIODS; // 1 second = 192000 bytes
afrx_params.active_ch = 2;
// must be multiple of 32*channels = 64
afrx_params.bytes_per_period = AUDIO_BYTES_PER_PERIOD;
XAudioFormatterSetFsMultiplier(&audio_formatter_rx, 48000*256, 48000);
XAudioFormatterSetHwParams(&audio_formatter_rx, &afrx_params);
XAudioFormatter_InterruptDisable(&audio_formatter_rx, 1<<14); // timeout
XAudioFormatter_InterruptDisable(&audio_formatter_rx, 1<<13); // IOC
/*XAudioFormatter_InterruptEnable(&audio_formatter_rx, 1<<13); // IOC
printf("[adau] RX XAudioFormatter_InterruptEnable\n");*/
XI2srx_Config* i2srx_config = XI2s_Rx_LookupConfig(XPAR_XI2SRX_0_DEVICE_ID);
status = XI2s_Rx_CfgInitialize(&i2srx, i2srx_config, i2srx_config->BaseAddress);
//printf("[adau] I2S_RX cfg status: %d\n", status);
//printf("[adau] I2S_RX Dwidth: %d\n", i2srx.Config.DWidth);
//printf("[adau] I2S_RX MaxNumChannels: %d\n", i2srx.Config.MaxNumChannels);
XI2s_Rx_Enable(&i2srx, 1);
XAudioFormatterDMAStart(&audio_formatter_rx);
printf("[adau] XAudioFormatter_InterruptEnable...\n");
XAudioFormatter_InterruptEnable(&audio_formatter, 1<<13); // IOC
printf("[adau] XI2s_Tx_Enable...\n");
XI2s_Tx_Enable(&i2s, 1);
printf("[adau] XAudioFormatterDMAStart...\n");
XAudioFormatterDMAStart(&audio_formatter);
printf("[adau] XAudioFormatterDMAStart done.\n");
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
}
// returns 1 if adau1701 found, otherwise 0
// set audio_tx_buffer and audio_rx_buffer before!
int audio_adau_init(int program_dsp) {
XIicPs_Config* i2c_config;
i2c_config = XIicPs_LookupConfig(IIC2_DEVICE_ID);
int status = XIicPs_CfgInitialize(&Iic2, i2c_config, i2c_config->BaseAddress);
printf("[adau] XIicPs_CfgInitialize 2: %d\n", status);
usleep(10000);
printf("[adau] XIicPs 2 is ready: %lx\n", Iic2.IsReady);
status = XIicPs_SelfTest(&Iic2);
printf("[adau] XIicPs_SelfTest: %x\n", status);
if (status != 0) {
printf("[adau] I2C instance 2 self test failed.");
return 0;
}
status = XIicPs_SetSClk(&Iic2, IIC2_SCLK_RATE);
printf("[adau] XIicPs_SetSClk: %x\n", status);
u8 rbuf[5];
u8 i = 0x34;
//usleep(10000);
// DSP core control: set ADM, DAM, CR
status = adau_write16(i, 2076, (1<<4)|(1<<3)|(1<<2));
if (status == 0) {
printf("[adau] write DSP core control: %d\n", i);
printf("\n[adau] ~~~~ ZZ9000AX detected. ~~~~\n\n");
} else {
printf("[adau] ZZ9000AX not detected.\n");
return 0;
}
status = adau_read16(i, 2076, rbuf);
if (status == 0) {
printf("[adau] read: %d %x %x\n", i, rbuf[0], rbuf[1]);
}
// DAC setup: DS = 01
status = adau_write16(i, 2087, 1);
printf("[adau] write DAC setup: %d\n", status);
rbuf[0] = 0;
rbuf[1] = 0;
status = adau_read16(i, 2087, rbuf);
printf("[adau] read from 2087: %02x%02x (status: %d)\n", rbuf[0], rbuf[1], status);
// TODO: OBP/OLRP
u16 MS = 1<<11; // clock master output
//u16 OBF = (0<<10)|(0<<9); // bclock = 49.152/16 = mclk/4 = 3.072mhz
u16 OBF = (1<<10)|(0<<9); // bclock = 49.152/4 = mclk = 12.288mhz
u16 OLF = (0<<8)|(0<<7); // lrclock = 49.152/1024 = word clock = 48khz?!
u16 MSB = 0; // msb 1
u16 OWL = 1<<1; // 16 bit
status = adau_write16(i, 0x081e, MS|OBF|OLF|MSB|OWL);
printf("[adau] write serial output control: %d\n", status);
u32 MP0 = 1<<2; // MP02 digital input 0
u32 MP1 = 1<<6; //
u32 MP2 = 1<<10; //
u32 MP3 = 1<<14; //
u32 MP4 = 1<<18; // MP42 serial clock in
u32 MP5 = 1<<22; // MP52 serial clock in
u32 MP6 = 1<<2; //
u32 MP7 = 1<<6; //
u32 MP8 = 1<<10; //
u32 MP9 = 1<<14; //
u32 MP10 = 1<<18; // MP102 set (serial clock out)
u32 MP11 = 1<<22; // MP112 set (serial clock out)
status = adau_write24(i, 0x0820, MP0|MP1|MP2|MP3|MP4|MP5);
printf("[adau] write MP control 0x820: %d\n", status);
status = adau_write24(i, 0x0821, MP6|MP7|MP8|MP9|MP10|MP11);
printf("[adau] write MP control 0x821: %d\n", status);
status = adau_read24(i, 0x0820, rbuf);
printf("[adau] read from 0x820: %02x%02x%02x (status: %d)\n", rbuf[0], rbuf[1], rbuf[2], status);
status = adau_read24(i, 0x0821, rbuf);
printf("[adau] read from 0x821: %02x%02x%02x (status: %d)\n", rbuf[0], rbuf[1], rbuf[2], status);
audio_init_i2s();
if (program_dsp) {
audio_program_adau(Program_Data_IC_1, sizeof(Program_Data_IC_1));
audio_program_adau_params(Param_Data_IC_1, sizeof(Param_Data_IC_1));
audio_adau_set_lpf_params(23900);
audio_adau_set_mixer_vol(128, 64);
}
return 1;
}
static int interrupt_enabled_audio = 0;
XTime debug_time_start = 0;
void audio_debug_timer(int zdata) {
if (zdata == 0) {
XTime_GetTime(&debug_time_start);
} else {
XTime debug_time_stop;
XTime_GetTime(&debug_time_stop);
printf("%x;%09.2f us\n", (uint8_t)zdata,
1.0 * (debug_time_stop-debug_time_start) / (COUNTS_PER_SECOND/1000000));
XTime_GetTime(&debug_time_start);
}
}
int isra_count = 0;
// audio formatter interrupt, triggered whenever a period is completed
void isr_audio(void *dummy) {
uint32_t val = XAudioFormatter_ReadReg(XPAR_XAUDIOFORMATTER_0_BASEADDR, XAUD_FORMATTER_STS + XAUD_FORMATTER_MM2S_OFFSET);
val |= (1<<31); // clear irq
XAudioFormatter_WriteReg(XPAR_XAUDIOFORMATTER_0_BASEADDR,
XAUD_FORMATTER_STS + XAUD_FORMATTER_MM2S_OFFSET, val);
printf("[isra]\n");
isra_count = 0;
}
if (interrupt_enabled_audio) {
amiga_interrupt_set(AMIGA_INTERRUPT_AUDIO);
}
}
int israrx_count = 0;
// audio formatter interrupt, triggered whenever a period is completed
void isr_audio_rx(void *dummy) {
uint32_t val = XAudioFormatter_ReadReg(XPAR_XAUDIOFORMATTER_1_BASEADDR, XAUD_FORMATTER_STS + XAUD_FORMATTER_S2MM_OFFSET);
val |= (1<<31); // clear irq
XAudioFormatter_WriteReg(XPAR_XAUDIOFORMATTER_1_BASEADDR,
XAUD_FORMATTER_STS + XAUD_FORMATTER_S2MM_OFFSET, val);
if (israrx_count++>1000) {
printf("[isra_rx]\n");
israrx_count = 0;
}
}
uint32_t audio_get_dma_transfer_count() {
return XAudioFormatterGetDMATransferCount(&audio_formatter);
}
void audio_set_interrupt_enabled(int en) {
printf("[audio] enable irq: %d\n", en);
interrupt_enabled_audio = en;
if (!en) {
amiga_interrupt_clear(AMIGA_INTERRUPT_AUDIO);
}
}
// offset = offset from audio tx buffer
// returns audio_buffer_collision (1 or 0)
int audio_swab(uint16_t audio_buf_samples, uint32_t offset, int byteswap) {
int audio_buffer_collision = 0;
uint16_t* data = (uint16_t*)(audio_tx_buffer + offset);
int audio_freq = audio_buf_samples * 50;
//printf("[audio:%d] play: %d +%lu\n", byteswap, audio_freq, offset);
// byteswap
if (byteswap) {
for (int i=0; i < audio_buf_samples * 2; i++) {
data[i] = __builtin_bswap16(data[i]);
}
}
// FIXME missing filter, wonky address calculation
// resample if other freq
if (audio_freq != 48000) {
resample_s16((int16_t*)(audio_tx_buffer + offset),
(int16_t*)((uint8_t*)audio_tx_buffer+AUDIO_TX_BUFFER_SIZE*2),
audio_freq,
48000,
AUDIO_BYTES_PER_PERIOD/4);
memcpy(audio_tx_buffer + offset, (uint8_t*)audio_tx_buffer+AUDIO_TX_BUFFER_SIZE*2, AUDIO_BYTES_PER_PERIOD);
u32 txcount = audio_get_dma_transfer_count();
// is the distance of reader (audio dma) and writer (amiga) in the ring buffer too small?
// then signal this condition so amiga can adjust
if (abs(txcount-offset) < AUDIO_BYTES_PER_PERIOD) {
audio_buffer_collision = 1;
//printf("[aswap] ring collision %d\n", abs(txcount-offset));
} else {
audio_buffer_collision = 0;
}
if (audio_buffer_collision) {
printf("[aswap] d-a: %ld\n",txcount-offset);
}
return audio_buffer_collision;
}
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
double resample_cur = 0;
double resample_psampl = 0;
double resample_psampr = 0;
void resample_s16(int16_t *input, int16_t *output, int in_sample_rate,
int out_sample_rate, int output_samples) {
double step_dist = ((double) in_sample_rate / (double) out_sample_rate);
double cur = resample_cur;
int in_pos1 = 0, in_pos2 = 0;
double sample1l = 0, sample2l = 0, sample1r = 0, sample2r = 0;
int inmax = (int) (step_dist * 960.0) - 1;
for (uint32_t i = 0; i < output_samples; i++) {
in_pos1 = ((int) cur) - 1;
in_pos2 = (int) cur;
// FIXME hack
if (in_pos2 > inmax) {
in_pos2 = inmax;
in_pos1 = inmax - 1;
}
double frac2 = cur - (1 + in_pos1);
double frac1 = (double) 1.0 - frac2;
if (in_pos1 == -1) {
sample1l = frac1 * resample_psampl;
sample1r = frac1 * resample_psampr;
} else {
sample1l = frac1 * (double) input[in_pos1 * 2 + 0];
sample1r = frac1 * (double) input[in_pos1 * 2 + 1];
}
sample2l = frac2 * (double) input[in_pos2 * 2 + 0];
sample2r = frac2 * (double) input[in_pos2 * 2 + 1];
output[i * 2 + 0] = (int16_t) (sample1l + sample2l);
output[i * 2 + 1] = (int16_t) (sample1r + sample2r);
cur += step_dist;
}
resample_cur = cur - (int) cur;
resample_psampl = (double) input[in_pos2 * 2 + 0];
resample_psampr = (double) input[in_pos2 * 2 + 1];
}
void reset_resampling() {
resample_cur = 0;
resample_psampl = 0;
resample_psampr = 0;
}
void audio_set_tx_buffer(uint8_t* addr) {
printf("[audio] set tx buffer: %p\n", addr);
audio_tx_buffer = addr;
}
void audio_set_rx_buffer(uint8_t* addr) {
printf("[audio] set rx buffer: %p\n", addr);
audio_rx_buffer = addr;
}
void audio_silence() {
memset(audio_tx_buffer, 0, AUDIO_TX_BUFFER_SIZE);
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
// sources:
// https://webaudio.github.io/Audio-EQ-Cookbook/audio-eq-cookbook.html
// https://wiki.analog.com/resources/tools-software/sigmastudio/usingsigmastudio/systemimplementation
// https://ez.analog.com/dsp/sigmadsp/f/q-a/104470/nth-order-filter-coefficient-calculations
// https://wiki.analog.com/resources/tools-software/sigmastudio/toolbox/filters/general2ndorder
// https://ez.analog.com/dsp/sigmadsp/f/q-a/65510/parameters-with-adau1701
void adau_to_5_23(double param_dec, uint8_t* param_hex) {
long param223;
long param227;
// multiply decimal number by 2^23
param223 = param_dec * (1 << 23);
// convert to positive binary
param227 = param223 + (1 << 27);
param_hex[3] = (uint8_t) param227;
param_hex[2] = (uint8_t) (param227 >> 8);
param_hex[1] = (uint8_t) (param227 >> 16);
param_hex[0] = (uint8_t) (param227 >> 24);
// invert sign bit to get correct sign
param_hex[0] = param_hex[0] ^ 0x08;
}
double flt_omega(double fs, double f0) {
return 2.0 * M_PI * (f0 / fs);
}
double flt_alpha(double fs, double f0) {
double omega = flt_omega(fs, f0);
double Q = 1.0 / sqrt(2.0);
return sin(omega) / (2.0 * Q);
}
void audio_adau_set_lpf_params(int f0) {
double gain = 1; // FIXME unused
int fs = 48000;
printf("[lpf] f0: %d\n", f0);
double omega = flt_omega(fs, f0);
double alpha = flt_alpha(fs, f0);
double a0 = 1.0 + alpha;
double a1 = -2.0 * cos(omega);
double a2 = 1.0 - alpha;
double b0 = (1.0 - cos(omega)) / 2.0;
double b1 = 1.0 - cos(omega);
double b2 = b0;
a1 /= a0;
a2 /= a0;
b0 /= a0;
b1 /= a0;
b2 /= a0;
a1 = -a1;
a2 = -a2;
uint8_t buf[4];
adau_to_5_23(b0, buf);
adau_write32(0x34, MOD_GENFILTER1_ALG0_STAGE0_B0_ADDR, buf);
printf("[lpf] b0: %f\t%02x %02x %02x %02x\n", b0, buf[0], buf[1], buf[2], buf[3]);
adau_to_5_23(b1, buf);
adau_write32(0x34, MOD_GENFILTER1_ALG0_STAGE0_B1_ADDR, buf);
printf("[lpf] b1: %f\t%02x %02x %02x %02x\n", b1, buf[0], buf[1], buf[2], buf[3]);
adau_to_5_23(b2, buf);
adau_write32(0x34, MOD_GENFILTER1_ALG0_STAGE0_B2_ADDR, buf);
printf("[lpf] b2: %f\t%02x %02x %02x %02x\n", b2, buf[0], buf[1], buf[2], buf[3]);
adau_to_5_23(a1, buf);
adau_write32(0x34, MOD_GENFILTER1_ALG0_STAGE0_A1_ADDR, buf);
printf("[lpf] a1: %f\t%02x %02x %02x %02x\n", a1, buf[0], buf[1], buf[2], buf[3]);
adau_to_5_23(a2, buf);
adau_write32(0x34, MOD_GENFILTER1_ALG0_STAGE0_A2_ADDR, buf);
printf("[lpf] a2: %f\t%02x %02x %02x %02x\n\n", a2, buf[0], buf[1], buf[2], buf[3]);
}
// vol range: 0-255. 127 = 0db
// vol1: paula
// vol2: i2s
void audio_adau_set_mixer_vol(int vol1, int vol2) {
double v1 = ((double)vol1)/127.0;
double v2 = ((double)vol2)/127.0;
printf("[vol] v1: %f v2: %f\n", v1, v2);
uint8_t buf[4];
adau_to_5_23(v1, buf);
adau_write32(0x34, MOD_STMIXER1_ALG0_STAGE0_VOLUME_ADDR, buf);
adau_write32(0x34, MOD_STMIXER1_ALG0_STAGE1_VOLUME_ADDR, buf);
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
void audio_adau_set_prefactor(int pre) {
double p;
if(pre > 100) pre = 100;
if(pre < 0) pre = 0;
p = .01f * (double)pre;
uint8_t buf[4];
adau_to_5_23(p, buf);
adau_write32(0x34, MOD_PREFACTOR_ALG0_GAIN1940ALGNS3_ADDR, buf);
adau_write32(0x34, MOD_PREFACTOR_ALG1_GAIN1940ALGNS4_ADDR, buf);
}
void audio_adau_set_vol_pan(int vol, int pan) {
LONG VolL, VolR;
double vl, vr;
VolL = vol;
if(pan > 50) VolL -= 2*(pan-50);
VolR = vol;
if(pan < 50) VolR -= 2*(50-pan);
if(VolL > 100) VolL = 100;
if(VolR > 100) VolR = 100;
if(VolL < 0) VolL = 0;
if(VolR < 0) VolR = 0;
vl = .01f * (double)VolL;
vr = .01f * (double)VolR;
uint8_t buf[4];
adau_to_5_23(vl, buf);
adau_write32(0x34, MOD_VOLUME_ALG0_GAIN1940ALGNS1_ADDR, buf);
adau_to_5_23(vr, buf);
adau_write32(0x34, MOD_VOLUME_ALG1_GAIN1940ALGNS2_ADDR, buf);
}
double eq_omega(double fs, double f0) {
return 2.0 * M_PI * (f0 / fs);
}
double eq_alpha(double fs, double f0) {
double omega = eq_omega(fs, f0);
double Q = 1.2247449;
return sin(omega) / (2.0 * Q);
}
// gain range: 0 = -12dB .. 50 = 0dB .. 100 = 12 dB
void audio_adau_set_eq_gain(int band, int gain) {
if(band > 9) return;
// These are the classic
static const double BandFreqs[10] = {
31.25, 62.5, 125.0, 250.0, 500.0, 1000.0, 2000.0, 4000.0, 8000.0, 16000.0
};
double dBBoost = ((float)gain-50.0f)*12.0/50.0;
double gainLinear = 1.0;
double A= pow(10.0, dBBoost / 40.0);
double fs = 48000.0f;
double f0 = BandFreqs[band];
double omega = eq_omega(fs, f0);
double alpha = eq_alpha(fs, f0);
double a0 = 1.0 + alpha/A;
double a1 = -2.0 * cos(omega);
double a2 = 1.0 - alpha/A;
double b0 = (1 + alpha*A) * gainLinear;
double b1 = -(2.0 * cos(omega)) * gainLinear;
double b2 = (1.0 - alpha*A) * gainLinear;
a1 /= a0;
a2 /= a0;
b0 /= a0;
b1 /= a0;
b2 /= a0;
a1 = -a1;
a2 = -a2;
printf("[equ] band: %d dB: %.1lf\n", band, dBBoost);
// https://ez.analog.com/dsp/sigmadsp/w/documents/5182/implementing-safeload-writes-on-the-adau1701
uint8_t buf[5];
buf[0] = 0;
// Safeload Data 0, address 0x0810
adau_to_5_23(b0, &buf[1]);
adau_write40(0x34, 0x0810, buf);
// Safeload Address 0, address 0x0815
adau_write16(0x34, 0x0815, MOD_EQUALIZER_ALG0_STAGE0_B0_ADDR + band*5);
// Safeload Data 1, address 0x0811
adau_to_5_23(b1, &buf[1]);
adau_write40(0x34, 0x0811, buf);
// Safeload Address 1, address 0x0816
adau_write16(0x34, 0x0816, MOD_EQUALIZER_ALG0_STAGE0_B1_ADDR + band*5);
// Safeload Data 2, address 0x0812
adau_to_5_23(b2, &buf[1]);
adau_write40(0x34, 0x0812, buf);
// Safeload Address 2, address 0x0817
adau_write16(0x34, 0x0817, MOD_EQUALIZER_ALG0_STAGE0_B2_ADDR + band*5);
// Safeload Data 3, address 0x0813
adau_to_5_23(a1, &buf[1]);
adau_write40(0x34, 0x0813, buf);
// Safeload Address 3, address 0x0818
adau_write16(0x34, 0x0818, MOD_EQUALIZER_ALG0_STAGE0_A0_ADDR + band*5);
// Safeload Data 4, address 0x0814
adau_to_5_23(a2, &buf[1]);
adau_write40(0x34, 0x0814, buf);
// Safeload Address 4, address 0x0819
adau_write16(0x34, 0x0819, MOD_EQUALIZER_ALG0_STAGE0_A1_ADDR + band*5);
// Initiate safeload transfer bit, address 0x081C
adau_write16(0x34, 0x081C, 0x003C);
usleep(25);
}