diff --git a/cpu/ppc4xx/44x_spd_ddr2.c b/cpu/ppc4xx/44x_spd_ddr2.c
new file mode 100644
index 0000000000000000000000000000000000000000..6cff3a2e1a96fbf101185753766efc4019f92a36
--- /dev/null
+++ b/cpu/ppc4xx/44x_spd_ddr2.c
@@ -0,0 +1,2759 @@
+/*
+ * cpu/ppc4xx/44x_spd_ddr2.c
+ * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
+ * DDR2 controller (non Denali Core). Those are 440SP/SPe.
+ *
+ * (C) Copyright 2007
+ * Stefan Roese, DENX Software Engineering, sr@denx.de.
+ *
+ * COPYRIGHT   AMCC   CORPORATION 2004
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ *
+ */
+
+/* define DEBUG for debugging output (obviously ;-)) */
+#if 0
+#define DEBUG
+#endif
+
+#include <common.h>
+#include <ppc4xx.h>
+#include <i2c.h>
+#include <asm/io.h>
+#include <asm/processor.h>
+#include <asm/mmu.h>
+
+#if defined(CONFIG_SPD_EEPROM) &&				\
+	(defined(CONFIG_440SP) || defined(CONFIG_440SPE))
+
+#ifndef	TRUE
+#define TRUE            1
+#endif
+#ifndef FALSE
+#define FALSE           0
+#endif
+
+#define SDRAM_DDR1	1
+#define SDRAM_DDR2	2
+#define SDRAM_NONE	0
+
+#define MAXDIMMS 	2
+#define MAXRANKS 	4
+#define MAXBXCF		4
+#define MAX_SPD_BYTES	256   /* Max number of bytes on the DIMM's SPD EEPROM */
+
+#define ONE_BILLION	1000000000
+
+#define MULDIV64(m1, m2, d)	(u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
+
+#if defined(DEBUG)
+static void ppc440sp_sdram_register_dump(void);
+#endif
+
+/*-----------------------------------------------------------------------------+
+ * Defines
+ *-----------------------------------------------------------------------------*/
+/* Defines for the Read Cycle Delay test */
+#define NUMMEMTESTS 8
+#define NUMMEMWORDS 8
+
+/* Private Structure Definitions */
+
+/* enum only to ease code for cas latency setting */
+typedef enum ddr_cas_id {
+	DDR_CAS_2      = 20,
+	DDR_CAS_2_5    = 25,
+	DDR_CAS_3      = 30,
+	DDR_CAS_4      = 40,
+	DDR_CAS_5      = 50
+} ddr_cas_id_t;
+
+/*-----------------------------------------------------------------------------+
+ * Prototypes
+ *-----------------------------------------------------------------------------*/
+static unsigned long sdram_memsize(void);
+void program_tlb(u32 start, u32 size);
+static void get_spd_info(unsigned long *dimm_populated,
+			 unsigned char *iic0_dimm_addr,
+			 unsigned long num_dimm_banks);
+static void check_mem_type(unsigned long *dimm_populated,
+			   unsigned char *iic0_dimm_addr,
+			   unsigned long num_dimm_banks);
+static void check_frequency(unsigned long *dimm_populated,
+			    unsigned char *iic0_dimm_addr,
+			    unsigned long num_dimm_banks);
+static void check_rank_number(unsigned long *dimm_populated,
+			      unsigned char *iic0_dimm_addr,
+			      unsigned long num_dimm_banks);
+static void check_voltage_type(unsigned long *dimm_populated,
+			       unsigned char *iic0_dimm_addr,
+			       unsigned long num_dimm_banks);
+static void program_memory_queue(unsigned long *dimm_populated,
+				 unsigned char *iic0_dimm_addr,
+				 unsigned long num_dimm_banks);
+static void program_codt(unsigned long *dimm_populated,
+			 unsigned char *iic0_dimm_addr,
+			 unsigned long num_dimm_banks);
+static void program_mode(unsigned long *dimm_populated,
+			 unsigned char *iic0_dimm_addr,
+			 unsigned long num_dimm_banks,
+                         ddr_cas_id_t *selected_cas);
+static void program_tr(unsigned long *dimm_populated,
+		       unsigned char *iic0_dimm_addr,
+		       unsigned long num_dimm_banks);
+static void program_rtr(unsigned long *dimm_populated,
+			unsigned char *iic0_dimm_addr,
+			unsigned long num_dimm_banks);
+static void program_bxcf(unsigned long *dimm_populated,
+			 unsigned char *iic0_dimm_addr,
+			 unsigned long num_dimm_banks);
+static void program_copt1(unsigned long *dimm_populated,
+			  unsigned char *iic0_dimm_addr,
+			  unsigned long num_dimm_banks);
+static void program_initplr(unsigned long *dimm_populated,
+			    unsigned char *iic0_dimm_addr,
+			    unsigned long num_dimm_banks,
+                            ddr_cas_id_t selected_cas);
+static unsigned long is_ecc_enabled(void);
+static void program_ecc(unsigned long *dimm_populated,
+			unsigned char *iic0_dimm_addr,
+			unsigned long num_dimm_banks);
+static void program_ecc_addr(unsigned long start_address,
+			     unsigned long num_bytes);
+
+#ifdef HARD_CODED_DQS /* calibration test with hardvalues */
+static void          test(void);
+#else
+static void          DQS_calibration_process(void);
+#endif
+static void program_DQS_calibration(unsigned long *dimm_populated,
+				    unsigned char *iic0_dimm_addr,
+				    unsigned long num_dimm_banks);
+
+static u32 mfdcr_any(u32 dcr)
+{
+	u32 val;
+
+	switch (dcr) {
+	case SDRAM_R0BAS + 0:
+		val = mfdcr(SDRAM_R0BAS + 0);
+		break;
+	case SDRAM_R0BAS + 1:
+		val = mfdcr(SDRAM_R0BAS + 1);
+		break;
+	case SDRAM_R0BAS + 2:
+		val = mfdcr(SDRAM_R0BAS + 2);
+		break;
+	case SDRAM_R0BAS + 3:
+		val = mfdcr(SDRAM_R0BAS + 3);
+		break;
+	default:
+		printf("DCR %d not defined in case statement!!!\n", dcr);
+		val = 0; /* just to satisfy the compiler */
+	}
+
+	return val;
+}
+
+static void mtdcr_any(u32 dcr, u32 val)
+{
+	switch (dcr) {
+	case SDRAM_R0BAS + 0:
+		mtdcr(SDRAM_R0BAS + 0, val);
+		break;
+	case SDRAM_R0BAS + 1:
+		mtdcr(SDRAM_R0BAS + 1, val);
+		break;
+	case SDRAM_R0BAS + 2:
+		mtdcr(SDRAM_R0BAS + 2, val);
+		break;
+	case SDRAM_R0BAS + 3:
+		mtdcr(SDRAM_R0BAS + 3, val);
+		break;
+	default:
+		printf("DCR %d not defined in case statement!!!\n", dcr);
+	}
+}
+
+static void wait_ddr_idle(void)
+{
+	u32 val;
+
+	do {
+		mfsdram(SDRAM_MCSTAT, val);
+	} while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
+}
+
+static unsigned char spd_read(uchar chip, uint addr)
+{
+	unsigned char data[2];
+
+	if (i2c_probe(chip) == 0)
+		if (i2c_read(chip, addr, 1, data, 1) == 0)
+			return data[0];
+
+	return 0;
+}
+
+/*-----------------------------------------------------------------------------+
+ * sdram_memsize
+ *-----------------------------------------------------------------------------*/
+static unsigned long sdram_memsize(void)
+{
+	unsigned long mem_size;
+	unsigned long mcopt2;
+	unsigned long mcstat;
+	unsigned long mb0cf;
+	unsigned long sdsz;
+	unsigned long i;
+
+	mem_size = 0;
+
+	mfsdram(SDRAM_MCOPT2, mcopt2);
+	mfsdram(SDRAM_MCSTAT, mcstat);
+
+	/* DDR controller must be enabled and not in self-refresh. */
+	/* Otherwise memsize is zero. */
+	if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
+	    && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
+	    && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
+		== (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
+		for (i = 0; i < 4; i++) {
+			mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
+			/* Banks enabled */
+			if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
+				sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
+
+				switch(sdsz) {
+				case SDRAM_RXBAS_SDSZ_8:
+					mem_size+=8;
+					break;
+				case SDRAM_RXBAS_SDSZ_16:
+					mem_size+=16;
+					break;
+				case SDRAM_RXBAS_SDSZ_32:
+					mem_size+=32;
+					break;
+				case SDRAM_RXBAS_SDSZ_64:
+					mem_size+=64;
+					break;
+				case SDRAM_RXBAS_SDSZ_128:
+					mem_size+=128;
+					break;
+				case SDRAM_RXBAS_SDSZ_256:
+					mem_size+=256;
+					break;
+				case SDRAM_RXBAS_SDSZ_512:
+					mem_size+=512;
+					break;
+				case SDRAM_RXBAS_SDSZ_1024:
+					mem_size+=1024;
+					break;
+				case SDRAM_RXBAS_SDSZ_2048:
+					mem_size+=2048;
+					break;
+				case SDRAM_RXBAS_SDSZ_4096:
+					mem_size+=4096;
+					break;
+				default:
+					mem_size=0;
+					break;
+				}
+			}
+		}
+	}
+
+	mem_size *= 1024 * 1024;
+	return(mem_size);
+}
+
+/*-----------------------------------------------------------------------------+
+ * initdram.  Initializes the 440SP Memory Queue and DDR SDRAM controller.
+ * Note: This routine runs from flash with a stack set up in the chip's
+ * sram space.  It is important that the routine does not require .sbss, .bss or
+ * .data sections.  It also cannot call routines that require these sections.
+ *-----------------------------------------------------------------------------*/
+/*-----------------------------------------------------------------------------
+ * Function:     initdram
+ * Description:  Configures SDRAM memory banks for DDR operation.
+ *               Auto Memory Configuration option reads the DDR SDRAM EEPROMs
+ *               via the IIC bus and then configures the DDR SDRAM memory
+ *               banks appropriately. If Auto Memory Configuration is
+ *               not used, it is assumed that no DIMM is plugged
+ *-----------------------------------------------------------------------------*/
+long int initdram(int board_type)
+{
+	unsigned char spd0[MAX_SPD_BYTES];
+	unsigned char spd1[MAX_SPD_BYTES];
+	unsigned char *dimm_spd[MAXDIMMS];
+	unsigned long dimm_populated[MAXDIMMS];
+	unsigned char iic0_dimm_addr[MAXDIMMS];
+	unsigned long num_dimm_banks;		    /* on board dimm banks */
+	unsigned long val;
+	ddr_cas_id_t  selected_cas;
+	unsigned long dram_size = 0;
+
+	num_dimm_banks = sizeof(iic0_dimm_addr);
+
+	/*------------------------------------------------------------------
+	 * Set up an array of SPD matrixes.
+	 *-----------------------------------------------------------------*/
+	dimm_spd[0] = spd0;
+	dimm_spd[1] = spd1;
+
+	/*------------------------------------------------------------------
+	 * Set up an array of iic0 dimm addresses.
+	 *-----------------------------------------------------------------*/
+	iic0_dimm_addr[0] = IIC0_DIMM0_ADDR;
+	iic0_dimm_addr[1] = IIC0_DIMM1_ADDR;
+
+	/*------------------------------------------------------------------
+	 * Reset the DDR-SDRAM controller.
+	 *-----------------------------------------------------------------*/
+	mtsdr(SDR0_SRST, 0x00200000);
+	mtsdr(SDR0_SRST, 0x00000000);
+
+	/*
+	 * Make sure I2C controller is initialized
+	 * before continuing.
+	 */
+
+	/* switch to correct I2C bus */
+	I2C_SET_BUS(CFG_SPD_BUS_NUM);
+	i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
+
+	/*------------------------------------------------------------------
+	 * Clear out the serial presence detect buffers.
+	 * Perform IIC reads from the dimm.  Fill in the spds.
+	 * Check to see if the dimm slots are populated
+	 *-----------------------------------------------------------------*/
+	get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+	/*------------------------------------------------------------------
+	 * Check the memory type for the dimms plugged.
+	 *-----------------------------------------------------------------*/
+	check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+	/*------------------------------------------------------------------
+	 * Check the frequency supported for the dimms plugged.
+	 *-----------------------------------------------------------------*/
+	check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+	/*------------------------------------------------------------------
+	 * Check the total rank number.
+	 *-----------------------------------------------------------------*/
+	check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+	/*------------------------------------------------------------------
+	 * Check the voltage type for the dimms plugged.
+	 *-----------------------------------------------------------------*/
+	check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+	/*------------------------------------------------------------------
+	 * Program SDRAM controller options 2 register
+	 * Except Enabling of the memory controller.
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_MCOPT2, val);
+	mtsdram(SDRAM_MCOPT2,
+		(val &
+		 ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
+		   SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
+		   SDRAM_MCOPT2_ISIE_MASK))
+		| (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
+		   SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
+		   SDRAM_MCOPT2_ISIE_ENABLE));
+
+	/*------------------------------------------------------------------
+	 * Program SDRAM controller options 1 register
+	 * Note: Does not enable the memory controller.
+	 *-----------------------------------------------------------------*/
+	program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+	/*------------------------------------------------------------------
+	 * Set the SDRAM Controller On Die Termination Register
+	 *-----------------------------------------------------------------*/
+	program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+	/*------------------------------------------------------------------
+	 * Program SDRAM refresh register.
+	 *-----------------------------------------------------------------*/
+	program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+	/*------------------------------------------------------------------
+	 * Program SDRAM mode register.
+	 *-----------------------------------------------------------------*/
+	program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks, &selected_cas);
+
+	/*------------------------------------------------------------------
+	 * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_WRDTR, val);
+	mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
+		(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
+
+	/*------------------------------------------------------------------
+	 * Set the SDRAM Clock Timing Register
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_CLKTR, val);
+	mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);
+
+	/*------------------------------------------------------------------
+	 * Program the BxCF registers.
+	 *-----------------------------------------------------------------*/
+	program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+	/*------------------------------------------------------------------
+	 * Program SDRAM timing registers.
+	 *-----------------------------------------------------------------*/
+	program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+	/*------------------------------------------------------------------
+	 * Set the Extended Mode register
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_MEMODE, val);
+	mtsdram(SDRAM_MEMODE,
+		(val & ~(SDRAM_MEMODE_DIC_MASK  | SDRAM_MEMODE_DLL_MASK |
+			 SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
+		(SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
+		 | SDRAM_MEMODE_RTT_75OHM | SDRAM_MEMODE_DQS_ENABLE));
+
+	/*------------------------------------------------------------------
+	 * Program Initialization preload registers.
+	 *-----------------------------------------------------------------*/
+	program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
+			selected_cas);
+
+	/*------------------------------------------------------------------
+	 * Delay to ensure 200usec have elapsed since reset.
+	 *-----------------------------------------------------------------*/
+	udelay(400);
+
+	/*------------------------------------------------------------------
+	 * Set the memory queue core base addr.
+	 *-----------------------------------------------------------------*/
+	program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+	/*------------------------------------------------------------------
+	 * Program SDRAM controller options 2 register
+	 * Enable the memory controller.
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_MCOPT2, val);
+	mtsdram(SDRAM_MCOPT2,
+		(val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
+			 SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
+		(SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
+
+	/*------------------------------------------------------------------
+	 * Wait for SDRAM_CFG0_DC_EN to complete.
+	 *-----------------------------------------------------------------*/
+	do {
+		mfsdram(SDRAM_MCSTAT, val);
+	} while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
+
+	/* get installed memory size */
+	dram_size = sdram_memsize();
+
+	/* and program tlb entries for this size (dynamic) */
+	program_tlb(0, dram_size);
+
+#if 1 /* TODO: ECC support will come later */
+	/*------------------------------------------------------------------
+	 * If ecc is enabled, initialize the parity bits.
+	 *-----------------------------------------------------------------*/
+	program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+#endif
+
+	/*------------------------------------------------------------------
+	 * DQS calibration.
+	 *-----------------------------------------------------------------*/
+	program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
+
+#ifdef DEBUG
+	ppc440sp_sdram_register_dump();
+#endif
+
+	return dram_size;
+}
+
+static void get_spd_info(unsigned long *dimm_populated,
+			 unsigned char *iic0_dimm_addr,
+			 unsigned long num_dimm_banks)
+{
+	unsigned long dimm_num;
+	unsigned long dimm_found;
+	unsigned char num_of_bytes;
+	unsigned char total_size;
+
+	dimm_found = FALSE;
+	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+		num_of_bytes = 0;
+		total_size = 0;
+
+		num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
+		debug("\nspd_read(0x%x) returned %d\n",
+		      iic0_dimm_addr[dimm_num], num_of_bytes);
+		total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
+		debug("spd_read(0x%x) returned %d\n",
+		      iic0_dimm_addr[dimm_num], total_size);
+
+		if ((num_of_bytes != 0) && (total_size != 0)) {
+			dimm_populated[dimm_num] = TRUE;
+			dimm_found = TRUE;
+			debug("DIMM slot %lu: populated\n", dimm_num);
+		} else {
+			dimm_populated[dimm_num] = FALSE;
+			debug("DIMM slot %lu: Not populated\n", dimm_num);
+		}
+	}
+
+	if (dimm_found == FALSE) {
+		printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
+		hang();
+	}
+}
+
+#ifdef CONFIG_ADD_RAM_INFO
+void board_add_ram_info(int use_default)
+{
+        if (is_ecc_enabled())
+                puts(" (ECC enabled)");
+        else
+                puts(" (ECC not enabled)");
+}
+#endif
+
+/*------------------------------------------------------------------
+ * For the memory DIMMs installed, this routine verifies that they
+ * really are DDR specific DIMMs.
+ *-----------------------------------------------------------------*/
+static void check_mem_type(unsigned long *dimm_populated,
+			   unsigned char *iic0_dimm_addr,
+			   unsigned long num_dimm_banks)
+{
+	unsigned long dimm_num;
+	unsigned long dimm_type;
+
+	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+		if (dimm_populated[dimm_num] == TRUE) {
+			dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
+			switch (dimm_type) {
+			case 1:
+				printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
+				       "slot %d.\n", (unsigned int)dimm_num);
+				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
+				printf("Replace the DIMM module with a supported DIMM.\n\n");
+				hang();
+				break;
+			case 2:
+				printf("ERROR: EDO DIMM detected in slot %d.\n",
+				       (unsigned int)dimm_num);
+				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
+				printf("Replace the DIMM module with a supported DIMM.\n\n");
+				hang();
+				break;
+			case 3:
+				printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
+				       (unsigned int)dimm_num);
+				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
+				printf("Replace the DIMM module with a supported DIMM.\n\n");
+				hang();
+				break;
+			case 4:
+				printf("ERROR: SDRAM DIMM detected in slot %d.\n",
+				       (unsigned int)dimm_num);
+				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
+				printf("Replace the DIMM module with a supported DIMM.\n\n");
+				hang();
+				break;
+			case 5:
+				printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
+				       (unsigned int)dimm_num);
+				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
+				printf("Replace the DIMM module with a supported DIMM.\n\n");
+				hang();
+				break;
+			case 6:
+				printf("ERROR: SGRAM DIMM detected in slot %d.\n",
+				       (unsigned int)dimm_num);
+				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
+				printf("Replace the DIMM module with a supported DIMM.\n\n");
+				hang();
+				break;
+			case 7:
+				debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
+				dimm_populated[dimm_num] = SDRAM_DDR1;
+				break;
+			case 8:
+				debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
+				dimm_populated[dimm_num] = SDRAM_DDR2;
+				break;
+			default:
+				printf("ERROR: Unknown DIMM detected in slot %d.\n",
+				       (unsigned int)dimm_num);
+				printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
+				printf("Replace the DIMM module with a supported DIMM.\n\n");
+				hang();
+				break;
+			}
+		}
+	}
+	for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
+		if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
+		    && (dimm_populated[dimm_num]   != SDRAM_NONE)
+		    && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
+			printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
+			hang();
+		}
+	}
+}
+
+/*------------------------------------------------------------------
+ * For the memory DIMMs installed, this routine verifies that
+ * frequency previously calculated is supported.
+ *-----------------------------------------------------------------*/
+static void check_frequency(unsigned long *dimm_populated,
+			    unsigned char *iic0_dimm_addr,
+			    unsigned long num_dimm_banks)
+{
+	unsigned long dimm_num;
+	unsigned long tcyc_reg;
+	unsigned long cycle_time;
+	unsigned long calc_cycle_time;
+	unsigned long sdram_freq;
+	unsigned long sdr_ddrpll;
+	PPC440_SYS_INFO board_cfg;
+
+	/*------------------------------------------------------------------
+	 * Get the board configuration info.
+	 *-----------------------------------------------------------------*/
+	get_sys_info(&board_cfg);
+
+	mfsdr(sdr_ddr0, sdr_ddrpll);
+	sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
+
+	/*
+	 * calc_cycle_time is calculated from DDR frequency set by board/chip
+	 * and is expressed in multiple of 10 picoseconds
+	 * to match the way DIMM cycle time is calculated below.
+	 */
+	calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
+
+	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+		if (dimm_populated[dimm_num] != SDRAM_NONE) {
+			tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
+			/*
+			 * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
+			 * the higher order nibble (bits 4-7) designates the cycle time
+			 * to a granularity of 1ns;
+			 * the value presented by the lower order nibble (bits 0-3)
+			 * has a granularity of .1ns and is added to the value designated
+			 * by the higher nibble. In addition, four lines of the lower order
+			 * nibble are assigned to support +.25,+.33, +.66 and +.75.
+			 */
+			 /* Convert from hex to decimal */
+			if ((tcyc_reg & 0x0F) == 0x0D)
+				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
+			else if ((tcyc_reg & 0x0F) == 0x0C)
+				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
+			else if ((tcyc_reg & 0x0F) == 0x0B)
+				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
+			else if ((tcyc_reg & 0x0F) == 0x0A)
+				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
+			else
+				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
+					((tcyc_reg & 0x0F)*10);
+
+			if  (cycle_time > (calc_cycle_time + 10)) {
+				/*
+				 * the provided sdram cycle_time is too small
+				 * for the available DIMM cycle_time.
+				 * The additionnal 100ps is here to accept a small incertainty.
+				 */
+				printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
+				       "slot %d \n while calculated cycle time is %d ps.\n",
+				       (unsigned int)(cycle_time*10),
+				       (unsigned int)dimm_num,
+				       (unsigned int)(calc_cycle_time*10));
+				printf("Replace the DIMM, or change DDR frequency via "
+				       "strapping bits.\n\n");
+				hang();
+			}
+		}
+	}
+}
+
+/*------------------------------------------------------------------
+ * For the memory DIMMs installed, this routine verifies two
+ * ranks/banks maximum are availables.
+ *-----------------------------------------------------------------*/
+static void check_rank_number(unsigned long *dimm_populated,
+			      unsigned char *iic0_dimm_addr,
+			      unsigned long num_dimm_banks)
+{
+	unsigned long dimm_num;
+	unsigned long dimm_rank;
+	unsigned long total_rank = 0;
+
+	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+		if (dimm_populated[dimm_num] != SDRAM_NONE) {
+			dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
+			if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
+				dimm_rank = (dimm_rank & 0x0F) +1;
+			else
+				dimm_rank = dimm_rank & 0x0F;
+
+
+			if (dimm_rank > MAXRANKS) {
+				printf("ERROR: DRAM DIMM detected with %d ranks in "
+				       "slot %d is not supported.\n", dimm_rank, dimm_num);
+				printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
+				printf("Replace the DIMM module with a supported DIMM.\n\n");
+				hang();
+			} else
+				total_rank += dimm_rank;
+		}
+		if (total_rank > MAXRANKS) {
+			printf("ERROR: DRAM DIMM detected with a total of %d ranks "
+			       "for all slots.\n", (unsigned int)total_rank);
+			printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
+			printf("Remove one of the DIMM modules.\n\n");
+			hang();
+		}
+	}
+}
+
+/*------------------------------------------------------------------
+ * only support 2.5V modules.
+ * This routine verifies this.
+ *-----------------------------------------------------------------*/
+static void check_voltage_type(unsigned long *dimm_populated,
+			       unsigned char *iic0_dimm_addr,
+			       unsigned long num_dimm_banks)
+{
+	unsigned long dimm_num;
+	unsigned long voltage_type;
+
+	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+		if (dimm_populated[dimm_num] != SDRAM_NONE) {
+			voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
+			switch (voltage_type) {
+			case 0x00:
+				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
+				printf("This DIMM is 5.0 Volt/TTL.\n");
+				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
+				       (unsigned int)dimm_num);
+				hang();
+				break;
+			case 0x01:
+				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
+				printf("This DIMM is LVTTL.\n");
+				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
+				       (unsigned int)dimm_num);
+				hang();
+				break;
+			case 0x02:
+				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
+				printf("This DIMM is 1.5 Volt.\n");
+				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
+				       (unsigned int)dimm_num);
+				hang();
+				break;
+			case 0x03:
+				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
+				printf("This DIMM is 3.3 Volt/TTL.\n");
+				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
+				       (unsigned int)dimm_num);
+				hang();
+				break;
+			case 0x04:
+				/* 2.5 Voltage only for DDR1 */
+				break;
+			case 0x05:
+				/* 1.8 Voltage only for DDR2 */
+				break;
+			default:
+				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
+				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
+				       (unsigned int)dimm_num);
+				hang();
+				break;
+			}
+		}
+	}
+}
+
+/*-----------------------------------------------------------------------------+
+ * program_copt1.
+ *-----------------------------------------------------------------------------*/
+static void program_copt1(unsigned long *dimm_populated,
+			  unsigned char *iic0_dimm_addr,
+			  unsigned long num_dimm_banks)
+{
+	unsigned long dimm_num;
+	unsigned long mcopt1;
+	unsigned long ecc_enabled;
+	unsigned long ecc = 0;
+	unsigned long data_width = 0;
+	unsigned long dimm_32bit;
+	unsigned long dimm_64bit;
+	unsigned long registered = 0;
+	unsigned long attribute = 0;
+	unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
+	unsigned long bankcount;
+	unsigned long ddrtype;
+	unsigned long val;
+
+	ecc_enabled = TRUE;
+	dimm_32bit = FALSE;
+	dimm_64bit = FALSE;
+	buf0 = FALSE;
+	buf1 = FALSE;
+
+	/*------------------------------------------------------------------
+	 * Set memory controller options reg 1, SDRAM_MCOPT1.
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_MCOPT1, val);
+	mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
+			 SDRAM_MCOPT1_PMU_MASK  | SDRAM_MCOPT1_DMWD_MASK |
+			 SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
+			 SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
+			 SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
+			 SDRAM_MCOPT1_DREF_MASK);
+
+	mcopt1 |= SDRAM_MCOPT1_QDEP;
+	mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
+	mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
+	mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
+	mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
+	mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
+
+	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+		if (dimm_populated[dimm_num] != SDRAM_NONE) {
+			/* test ecc support */
+			ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
+			if (ecc != 0x02) /* ecc not supported */
+				ecc_enabled = FALSE;
+
+			/* test bank count */
+			bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
+			if (bankcount == 0x04) /* bank count = 4 */
+				mcopt1 |= SDRAM_MCOPT1_4_BANKS;
+			else /* bank count = 8 */
+				mcopt1 |= SDRAM_MCOPT1_8_BANKS;
+
+			/* test DDR type */
+			ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
+			/* test for buffered/unbuffered, registered, differential clocks */
+			registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
+			attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
+
+			/* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
+			if (dimm_num == 0) {
+				if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
+					mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
+				if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
+					mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
+				if (registered == 1) { /* DDR2 always buffered */
+					/* TODO: what about above  comments ? */
+					mcopt1 |= SDRAM_MCOPT1_RDEN;
+					buf0 = TRUE;
+				} else {
+					/* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
+					if ((attribute & 0x02) == 0x00) {
+						/* buffered not supported */
+						buf0 = FALSE;
+					} else {
+						mcopt1 |= SDRAM_MCOPT1_RDEN;
+						buf0 = TRUE;
+					}
+				}
+			}
+			else if (dimm_num == 1) {
+				if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
+					mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
+				if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
+					mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
+				if (registered == 1) {
+					/* DDR2 always buffered */
+					mcopt1 |= SDRAM_MCOPT1_RDEN;
+					buf1 = TRUE;
+				} else {
+					if ((attribute & 0x02) == 0x00) {
+						/* buffered not supported */
+						buf1 = FALSE;
+					} else {
+						mcopt1 |= SDRAM_MCOPT1_RDEN;
+						buf1 = TRUE;
+					}
+				}
+			}
+
+			/* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
+			data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
+				(((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
+
+			switch (data_width) {
+			case 72:
+			case 64:
+				dimm_64bit = TRUE;
+				break;
+			case 40:
+			case 32:
+				dimm_32bit = TRUE;
+				break;
+			default:
+				printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
+				       data_width);
+				printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
+				break;
+			}
+		}
+	}
+
+	/* verify matching properties */
+	if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
+		if (buf0 != buf1) {
+			printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
+			hang();
+		}
+	}
+
+	if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
+		printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
+		hang();
+	}
+	else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
+		mcopt1 |= SDRAM_MCOPT1_DMWD_64;
+	} else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
+		mcopt1 |= SDRAM_MCOPT1_DMWD_32;
+	} else {
+		printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
+		hang();
+	}
+
+	if (ecc_enabled == TRUE)
+		mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
+	else
+		mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
+
+	mtsdram(SDRAM_MCOPT1, mcopt1);
+}
+
+/*-----------------------------------------------------------------------------+
+ * program_codt.
+ *-----------------------------------------------------------------------------*/
+static void program_codt(unsigned long *dimm_populated,
+			 unsigned char *iic0_dimm_addr,
+			 unsigned long num_dimm_banks)
+{
+	unsigned long codt;
+	unsigned long modt0 = 0;
+	unsigned long modt1 = 0;
+	unsigned long modt2 = 0;
+	unsigned long modt3 = 0;
+	unsigned char dimm_num;
+	unsigned char dimm_rank;
+	unsigned char total_rank = 0;
+	unsigned char total_dimm = 0;
+	unsigned char dimm_type = 0;
+	unsigned char firstSlot = 0;
+
+	/*------------------------------------------------------------------
+	 * Set the SDRAM Controller On Die Termination Register
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_CODT, codt);
+	codt |= (SDRAM_CODT_IO_NMODE
+		 & (~SDRAM_CODT_DQS_SINGLE_END
+		    & ~SDRAM_CODT_CKSE_SINGLE_END
+		    & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
+		    & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
+
+	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+		if (dimm_populated[dimm_num] != SDRAM_NONE) {
+			dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
+			if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
+				dimm_rank = (dimm_rank & 0x0F) + 1;
+				dimm_type = SDRAM_DDR2;
+			} else {
+				dimm_rank = dimm_rank & 0x0F;
+				dimm_type = SDRAM_DDR1;
+			}
+
+			total_rank +=  dimm_rank;
+			total_dimm ++;
+			if ((dimm_num == 0) && (total_dimm == 1))
+				firstSlot = TRUE;
+			else
+				firstSlot = FALSE;
+		}
+	}
+	if (dimm_type == SDRAM_DDR2) {
+		codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
+		if ((total_dimm == 1) && (firstSlot == TRUE)) {
+			if (total_rank == 1) {
+				codt |= 0x00800000;
+				modt0 = 0x01000000;
+				modt1 = 0x00000000;
+				modt2 = 0x00000000;
+				modt3 = 0x00000000;
+			}
+			if (total_rank == 2) {
+				codt |= 0x02800000;
+				modt0 = 0x06000000;
+				modt1 = 0x01800000;
+				modt2 = 0x00000000;
+				modt3 = 0x00000000;
+			}
+		} else {
+			if (total_rank == 1) {
+				codt |= 0x00800000;
+				modt0 = 0x01000000;
+				modt1 = 0x00000000;
+				modt2 = 0x00000000;
+				modt3 = 0x00000000;
+			}
+			if (total_rank == 2) {
+				codt |= 0x02800000;
+				modt0 = 0x06000000;
+				modt1 = 0x01800000;
+				modt2 = 0x00000000;
+				modt3 = 0x00000000;
+			}
+		}
+		if (total_dimm == 2) {
+			if (total_rank == 2) {
+				codt |= 0x08800000;
+				modt0 = 0x18000000;
+				modt1 = 0x00000000;
+				modt2 = 0x01800000;
+				modt3 = 0x00000000;
+			}
+			if (total_rank == 4) {
+				codt |= 0x2a800000;
+				modt0 = 0x18000000;
+				modt1 = 0x18000000;
+				modt2 = 0x01800000;
+				modt3 = 0x01800000;
+			}
+		}
+  	} else {
+		codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
+		modt0 = 0x00000000;
+		modt1 = 0x00000000;
+		modt2 = 0x00000000;
+		modt3 = 0x00000000;
+
+		if (total_dimm == 1) {
+			if (total_rank == 1)
+				codt |= 0x00800000;
+			if (total_rank == 2)
+				codt |= 0x02800000;
+		}
+		if (total_dimm == 2) {
+			if (total_rank == 2)
+				codt |= 0x08800000;
+			if (total_rank == 4)
+				codt |= 0x2a800000;
+		}
+	}
+
+	debug("nb of dimm %d\n", total_dimm);
+	debug("nb of rank %d\n", total_rank);
+	if (total_dimm == 1)
+		debug("dimm in slot %d\n", firstSlot);
+
+	mtsdram(SDRAM_CODT, codt);
+	mtsdram(SDRAM_MODT0, modt0);
+	mtsdram(SDRAM_MODT1, modt1);
+	mtsdram(SDRAM_MODT2, modt2);
+	mtsdram(SDRAM_MODT3, modt3);
+}
+
+/*-----------------------------------------------------------------------------+
+ * program_initplr.
+ *-----------------------------------------------------------------------------*/
+static void program_initplr(unsigned long *dimm_populated,
+			    unsigned char *iic0_dimm_addr,
+			    unsigned long num_dimm_banks,
+                            ddr_cas_id_t selected_cas)
+{
+	unsigned long MR_CAS_value = 0;
+
+	/******************************************************
+	 ** Assumption: if more than one DIMM, all DIMMs are the same
+	 **             as already checked in check_memory_type
+	 ******************************************************/
+
+	if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
+		mtsdram(SDRAM_INITPLR0, 0x81B80000);
+		mtsdram(SDRAM_INITPLR1, 0x81900400);
+		mtsdram(SDRAM_INITPLR2, 0x81810000);
+		mtsdram(SDRAM_INITPLR3, 0xff800162);
+		mtsdram(SDRAM_INITPLR4, 0x81900400);
+		mtsdram(SDRAM_INITPLR5, 0x86080000);
+		mtsdram(SDRAM_INITPLR6, 0x86080000);
+		mtsdram(SDRAM_INITPLR7, 0x81000062);
+	} else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
+		switch (selected_cas) {
+			/*
+			 * The CAS latency is a field of the Mode Reg
+			 * that need to be set from caller input.
+			 * CAS bits in Mode Reg are starting at bit 4 at least for the Micron DDR2
+			 * this is the reason of the shift.
+			 */
+		case DDR_CAS_3:
+			MR_CAS_value = 3 << 4;
+			break;
+		case DDR_CAS_4:
+			MR_CAS_value = 4 << 4;
+			break;
+		case DDR_CAS_5:
+			MR_CAS_value = 5 << 4;
+			break;
+		default:
+			printf("ERROR: ucode error on selected_cas value %d", (unsigned char)selected_cas);
+			hang();
+			break;
+		}
+
+		mtsdram(SDRAM_INITPLR0,  0xB5380000);			/* NOP */
+		mtsdram(SDRAM_INITPLR1,  0x82100400);			/* precharge 8 DDR clock cycle */
+		mtsdram(SDRAM_INITPLR2,  0x80820000);			/* EMR2 */
+		mtsdram(SDRAM_INITPLR3,  0x80830000);			/* EMR3 */
+		mtsdram(SDRAM_INITPLR4,  0x80810000);			/* EMR DLL ENABLE */
+		mtsdram(SDRAM_INITPLR5,  0x80800502 | MR_CAS_value);	/* MR w/ DLL reset */
+		mtsdram(SDRAM_INITPLR6,  0x82100400);			/* precharge 8 DDR clock cycle */
+		mtsdram(SDRAM_INITPLR7,  0x8a080000);			/* Refresh  50 DDR clock cycle */
+		mtsdram(SDRAM_INITPLR8,  0x8a080000);			/* Refresh  50 DDR clock cycle */
+		mtsdram(SDRAM_INITPLR9,  0x8a080000);			/* Refresh  50 DDR clock cycle */
+		mtsdram(SDRAM_INITPLR10, 0x8a080000);			/* Refresh  50 DDR clock cycle */
+		mtsdram(SDRAM_INITPLR11, 0x80800402 | MR_CAS_value);	/* MR w/o DLL reset */
+		mtsdram(SDRAM_INITPLR12, 0x80810380);			/* EMR OCD Default */
+		mtsdram(SDRAM_INITPLR13, 0x80810000);			/* EMR OCD Exit */
+	} else {
+		printf("ERROR: ucode error as unknown DDR type in program_initplr");
+		hang();
+	}
+}
+
+/*------------------------------------------------------------------
+ * This routine programs the SDRAM_MMODE register.
+ * the selected_cas is an output parameter, that will be passed
+ * by caller to call the above program_initplr( )
+ *-----------------------------------------------------------------*/
+static void program_mode(unsigned long *dimm_populated,
+			 unsigned char *iic0_dimm_addr,
+			 unsigned long num_dimm_banks,
+			 ddr_cas_id_t *selected_cas)
+{
+	unsigned long dimm_num;
+	unsigned long sdram_ddr1;
+	unsigned long t_wr_ns;
+	unsigned long t_wr_clk;
+	unsigned long cas_bit;
+	unsigned long cas_index;
+	unsigned long sdram_freq;
+	unsigned long ddr_check;
+	unsigned long mmode;
+	unsigned long tcyc_reg;
+	unsigned long cycle_2_0_clk;
+	unsigned long cycle_2_5_clk;
+	unsigned long cycle_3_0_clk;
+	unsigned long cycle_4_0_clk;
+	unsigned long cycle_5_0_clk;
+	unsigned long max_2_0_tcyc_ns_x_100;
+	unsigned long max_2_5_tcyc_ns_x_100;
+	unsigned long max_3_0_tcyc_ns_x_100;
+	unsigned long max_4_0_tcyc_ns_x_100;
+	unsigned long max_5_0_tcyc_ns_x_100;
+	unsigned long cycle_time_ns_x_100[3];
+	PPC440_SYS_INFO board_cfg;
+	unsigned char cas_2_0_available;
+	unsigned char cas_2_5_available;
+	unsigned char cas_3_0_available;
+	unsigned char cas_4_0_available;
+	unsigned char cas_5_0_available;
+	unsigned long sdr_ddrpll;
+
+	/*------------------------------------------------------------------
+	 * Get the board configuration info.
+	 *-----------------------------------------------------------------*/
+	get_sys_info(&board_cfg);
+
+	mfsdr(sdr_ddr0, sdr_ddrpll);
+	sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
+
+	/*------------------------------------------------------------------
+	 * Handle the timing.  We need to find the worst case timing of all
+	 * the dimm modules installed.
+	 *-----------------------------------------------------------------*/
+	t_wr_ns = 0;
+	cas_2_0_available = TRUE;
+	cas_2_5_available = TRUE;
+	cas_3_0_available = TRUE;
+	cas_4_0_available = TRUE;
+	cas_5_0_available = TRUE;
+	max_2_0_tcyc_ns_x_100 = 10;
+	max_2_5_tcyc_ns_x_100 = 10;
+	max_3_0_tcyc_ns_x_100 = 10;
+	max_4_0_tcyc_ns_x_100 = 10;
+	max_5_0_tcyc_ns_x_100 = 10;
+	sdram_ddr1 = TRUE;
+
+	/* loop through all the DIMM slots on the board */
+	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+		/* If a dimm is installed in a particular slot ... */
+		if (dimm_populated[dimm_num] != SDRAM_NONE) {
+			if (dimm_populated[dimm_num] == SDRAM_DDR1)
+				sdram_ddr1 = TRUE;
+			else
+				sdram_ddr1 = FALSE;
+
+			/* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /*  not used in this loop. */
+			cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
+
+			/* For a particular DIMM, grab the three CAS values it supports */
+			for (cas_index = 0; cas_index < 3; cas_index++) {
+				switch (cas_index) {
+				case 0:
+					tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
+					break;
+				case 1:
+					tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
+					break;
+				default:
+					tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
+					break;
+				}
+
+				if ((tcyc_reg & 0x0F) >= 10) {
+					if ((tcyc_reg & 0x0F) == 0x0D) {
+						/* Convert from hex to decimal */
+						cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
+					} else {
+						printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
+						       "in slot %d\n", (unsigned int)dimm_num);
+						hang();
+					}
+				} else {
+					/* Convert from hex to decimal */
+					cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) +
+						((tcyc_reg & 0x0F)*10);
+				}
+			}
+
+			/* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
+			/* supported for a particular DIMM. */
+			cas_index = 0;
+
+			if (sdram_ddr1) {
+				/*
+				 * DDR devices use the following bitmask for CAS latency:
+				 *  Bit   7    6    5    4    3    2    1    0
+				 *       TBD  4.0  3.5  3.0  2.5  2.0  1.5  1.0
+				 */
+				if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
+					max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
+					cas_index++;
+				} else {
+					if (cas_index != 0)
+						cas_index++;
+					cas_4_0_available = FALSE;
+				}
+
+				if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
+					max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
+					cas_index++;
+				} else {
+					if (cas_index != 0)
+						cas_index++;
+					cas_3_0_available = FALSE;
+				}
+
+				if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
+					max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
+					cas_index++;
+				} else {
+					if (cas_index != 0)
+						cas_index++;
+					cas_2_5_available = FALSE;
+				}
+
+				if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
+					max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
+					cas_index++;
+				} else {
+					if (cas_index != 0)
+						cas_index++;
+					cas_2_0_available = FALSE;
+				}
+			} else {
+				/*
+				 * DDR2 devices use the following bitmask for CAS latency:
+				 *  Bit   7    6    5    4    3    2    1    0
+				 *       TBD  6.0  5.0  4.0  3.0  2.0  TBD  TBD
+				 */
+				if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
+					max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
+					cas_index++;
+				} else {
+					if (cas_index != 0)
+						cas_index++;
+					cas_5_0_available = FALSE;
+				}
+
+				if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
+					max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
+					cas_index++;
+				} else {
+					if (cas_index != 0)
+						cas_index++;
+					cas_4_0_available = FALSE;
+				}
+
+				if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
+					max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
+					cas_index++;
+				} else {
+					if (cas_index != 0)
+						cas_index++;
+					cas_3_0_available = FALSE;
+				}
+			}
+		}
+	}
+
+	/*------------------------------------------------------------------
+	 * Set the SDRAM mode, SDRAM_MMODE
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_MMODE, mmode);
+	mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
+
+	cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100);
+	cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100);
+	cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100);
+	cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100);
+	cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100);
+
+	if (sdram_ddr1 == TRUE) { /* DDR1 */
+		if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
+			mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
+			*selected_cas = DDR_CAS_2;
+		} else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
+			mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
+			*selected_cas = DDR_CAS_2_5;
+		} else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
+			mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
+			*selected_cas = DDR_CAS_3;
+		} else {
+			printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
+			printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
+			printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
+			hang();
+		}
+	} else { /* DDR2 */
+		if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
+			mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
+			*selected_cas = DDR_CAS_3;
+		} else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
+			mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
+			*selected_cas = DDR_CAS_4;
+		} else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
+			mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
+			*selected_cas = DDR_CAS_5;
+		} else {
+			printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
+			printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
+			printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
+			hang();
+		}
+	}
+
+	if (sdram_ddr1 == TRUE)
+		mmode |= SDRAM_MMODE_WR_DDR1;
+	else {
+
+		/* loop through all the DIMM slots on the board */
+		for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+			/* If a dimm is installed in a particular slot ... */
+			if (dimm_populated[dimm_num] != SDRAM_NONE)
+				t_wr_ns = max(t_wr_ns,
+					      spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
+		}
+
+		/*
+		 * convert from nanoseconds to ddr clocks
+		 * round up if necessary
+		 */
+		t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
+		ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
+		if (sdram_freq != ddr_check)
+			t_wr_clk++;
+
+		switch (t_wr_clk) {
+		case 0:
+		case 1:
+		case 2:
+		case 3:
+			mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
+			break;
+		case 4:
+			mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
+			break;
+		case 5:
+			mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
+			break;
+		default:
+			mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
+			break;
+		}
+	}
+
+	mtsdram(SDRAM_MMODE, mmode);
+}
+
+/*-----------------------------------------------------------------------------+
+ * program_rtr.
+ *-----------------------------------------------------------------------------*/
+static void program_rtr(unsigned long *dimm_populated,
+			unsigned char *iic0_dimm_addr,
+			unsigned long num_dimm_banks)
+{
+	PPC440_SYS_INFO board_cfg;
+	unsigned long max_refresh_rate;
+	unsigned long dimm_num;
+	unsigned long refresh_rate_type;
+	unsigned long refresh_rate;
+	unsigned long rint;
+	unsigned long sdram_freq;
+	unsigned long sdr_ddrpll;
+	unsigned long val;
+
+	/*------------------------------------------------------------------
+	 * Get the board configuration info.
+	 *-----------------------------------------------------------------*/
+	get_sys_info(&board_cfg);
+
+	/*------------------------------------------------------------------
+	 * Set the SDRAM Refresh Timing Register, SDRAM_RTR
+	 *-----------------------------------------------------------------*/
+	mfsdr(sdr_ddr0, sdr_ddrpll);
+	sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
+
+	max_refresh_rate = 0;
+	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+		if (dimm_populated[dimm_num] != SDRAM_NONE) {
+
+			refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
+			refresh_rate_type &= 0x7F;
+			switch (refresh_rate_type) {
+			case 0:
+				refresh_rate =  15625;
+				break;
+			case 1:
+				refresh_rate =   3906;
+				break;
+			case 2:
+				refresh_rate =   7812;
+				break;
+			case 3:
+				refresh_rate =  31250;
+				break;
+			case 4:
+				refresh_rate =  62500;
+				break;
+			case 5:
+				refresh_rate = 125000;
+				break;
+			default:
+				refresh_rate = 0;
+				printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
+				       (unsigned int)dimm_num);
+				printf("Replace the DIMM module with a supported DIMM.\n\n");
+				hang();
+				break;
+			}
+
+			max_refresh_rate = max(max_refresh_rate, refresh_rate);
+		}
+	}
+
+	rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
+	mfsdram(SDRAM_RTR, val);
+	mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
+		(SDRAM_RTR_RINT_ENCODE(rint)));
+}
+
+/*------------------------------------------------------------------
+ * This routine programs the SDRAM_TRx registers.
+ *-----------------------------------------------------------------*/
+static void program_tr(unsigned long *dimm_populated,
+		       unsigned char *iic0_dimm_addr,
+		       unsigned long num_dimm_banks)
+{
+	unsigned long dimm_num;
+	unsigned long sdram_ddr1;
+	unsigned long t_rp_ns;
+	unsigned long t_rcd_ns;
+	unsigned long t_rrd_ns;
+	unsigned long t_ras_ns;
+	unsigned long t_rc_ns;
+	unsigned long t_rfc_ns;
+	unsigned long t_wpc_ns;
+	unsigned long t_wtr_ns;
+	unsigned long t_rpc_ns;
+	unsigned long t_rp_clk;
+	unsigned long t_rcd_clk;
+	unsigned long t_rrd_clk;
+	unsigned long t_ras_clk;
+	unsigned long t_rc_clk;
+	unsigned long t_rfc_clk;
+	unsigned long t_wpc_clk;
+	unsigned long t_wtr_clk;
+	unsigned long t_rpc_clk;
+	unsigned long sdtr1, sdtr2, sdtr3;
+	unsigned long ddr_check;
+	unsigned long sdram_freq;
+	unsigned long sdr_ddrpll;
+
+	PPC440_SYS_INFO board_cfg;
+
+	/*------------------------------------------------------------------
+	 * Get the board configuration info.
+	 *-----------------------------------------------------------------*/
+	get_sys_info(&board_cfg);
+
+	mfsdr(sdr_ddr0, sdr_ddrpll);
+	sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
+
+	/*------------------------------------------------------------------
+	 * Handle the timing.  We need to find the worst case timing of all
+	 * the dimm modules installed.
+	 *-----------------------------------------------------------------*/
+	t_rp_ns = 0;
+	t_rrd_ns = 0;
+	t_rcd_ns = 0;
+	t_ras_ns = 0;
+	t_rc_ns = 0;
+	t_rfc_ns = 0;
+	t_wpc_ns = 0;
+	t_wtr_ns = 0;
+	t_rpc_ns = 0;
+	sdram_ddr1 = TRUE;
+
+	/* loop through all the DIMM slots on the board */
+	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+		/* If a dimm is installed in a particular slot ... */
+		if (dimm_populated[dimm_num] != SDRAM_NONE) {
+			if (dimm_populated[dimm_num] == SDRAM_DDR2)
+				sdram_ddr1 = TRUE;
+			else
+				sdram_ddr1 = FALSE;
+
+			t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
+			t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
+			t_rp_ns  = max(t_rp_ns,  spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
+			t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
+			t_rc_ns  = max(t_rc_ns,  spd_read(iic0_dimm_addr[dimm_num], 41));
+			t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
+		}
+	}
+
+	/*------------------------------------------------------------------
+	 * Set the SDRAM Timing Reg 1, SDRAM_TR1
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_SDTR1, sdtr1);
+	sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
+		   SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
+
+	/* default values */
+	sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
+	sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
+
+	/* normal operations */
+	sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
+	sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
+
+	mtsdram(SDRAM_SDTR1, sdtr1);
+
+	/*------------------------------------------------------------------
+	 * Set the SDRAM Timing Reg 2, SDRAM_TR2
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_SDTR2, sdtr2);
+	sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK  | SDRAM_SDTR2_WTR_MASK |
+		   SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
+		   SDRAM_SDTR2_RPC_MASK  | SDRAM_SDTR2_RP_MASK  |
+		   SDRAM_SDTR2_RRD_MASK);
+
+	/*
+	 * convert t_rcd from nanoseconds to ddr clocks
+	 * round up if necessary
+	 */
+	t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
+	ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
+	if (sdram_freq != ddr_check)
+		t_rcd_clk++;
+
+	switch (t_rcd_clk) {
+	case 0:
+	case 1:
+		sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
+		break;
+	case 2:
+		sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
+		break;
+	case 3:
+		sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
+		break;
+	case 4:
+		sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
+		break;
+	default:
+		sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
+		break;
+	}
+
+	if (sdram_ddr1 == TRUE) { /* DDR1 */
+		if (sdram_freq < 200000000) {
+			sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
+			sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
+			sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
+		} else {
+			sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
+			sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
+			sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
+		}
+	} else { /* DDR2 */
+		/* loop through all the DIMM slots on the board */
+		for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+			/* If a dimm is installed in a particular slot ... */
+			if (dimm_populated[dimm_num] != SDRAM_NONE) {
+				t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
+				t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
+				t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
+			}
+		}
+
+		/*
+		 * convert from nanoseconds to ddr clocks
+		 * round up if necessary
+		 */
+		t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
+		ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
+		if (sdram_freq != ddr_check)
+			t_wpc_clk++;
+
+		switch (t_wpc_clk) {
+		case 0:
+		case 1:
+		case 2:
+			sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
+			break;
+		case 3:
+			sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
+			break;
+		case 4:
+			sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
+			break;
+		case 5:
+			sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
+			break;
+		default:
+			sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
+			break;
+		}
+
+		/*
+		 * convert from nanoseconds to ddr clocks
+		 * round up if necessary
+		 */
+		t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
+		ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
+		if (sdram_freq != ddr_check)
+			t_wtr_clk++;
+
+		switch (t_wtr_clk) {
+		case 0:
+		case 1:
+			sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
+			break;
+		case 2:
+			sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
+			break;
+		case 3:
+			sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
+			break;
+		default:
+			sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
+			break;
+		}
+
+		/*
+		 * convert from nanoseconds to ddr clocks
+		 * round up if necessary
+		 */
+		t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
+		ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
+		if (sdram_freq != ddr_check)
+			t_rpc_clk++;
+
+		switch (t_rpc_clk) {
+		case 0:
+		case 1:
+		case 2:
+			sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
+			break;
+		case 3:
+			sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
+			break;
+		default:
+			sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
+			break;
+		}
+	}
+
+	/* default value */
+	sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
+
+	/*
+	 * convert t_rrd from nanoseconds to ddr clocks
+	 * round up if necessary
+	 */
+	t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
+	ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
+	if (sdram_freq != ddr_check)
+		t_rrd_clk++;
+
+	if (t_rrd_clk == 3)
+		sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
+	else
+		sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
+
+	/*
+	 * convert t_rp from nanoseconds to ddr clocks
+	 * round up if necessary
+	 */
+	t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
+	ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
+	if (sdram_freq != ddr_check)
+		t_rp_clk++;
+
+	switch (t_rp_clk) {
+	case 0:
+	case 1:
+	case 2:
+	case 3:
+		sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
+		break;
+	case 4:
+		sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
+		break;
+	case 5:
+		sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
+		break;
+	case 6:
+		sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
+		break;
+	default:
+		sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
+		break;
+	}
+
+	mtsdram(SDRAM_SDTR2, sdtr2);
+
+	/*------------------------------------------------------------------
+	 * Set the SDRAM Timing Reg 3, SDRAM_TR3
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_SDTR3, sdtr3);
+	sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK  | SDRAM_SDTR3_RC_MASK |
+		   SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
+
+	/*
+	 * convert t_ras from nanoseconds to ddr clocks
+	 * round up if necessary
+	 */
+	t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
+	ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
+	if (sdram_freq != ddr_check)
+		t_ras_clk++;
+
+	sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
+
+	/*
+	 * convert t_rc from nanoseconds to ddr clocks
+	 * round up if necessary
+	 */
+	t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
+	ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
+	if (sdram_freq != ddr_check)
+		t_rc_clk++;
+
+	sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
+
+	/* default xcs value */
+	sdtr3 |= SDRAM_SDTR3_XCS;
+
+	/*
+	 * convert t_rfc from nanoseconds to ddr clocks
+	 * round up if necessary
+	 */
+	t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
+	ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
+	if (sdram_freq != ddr_check)
+		t_rfc_clk++;
+
+	sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
+
+	mtsdram(SDRAM_SDTR3, sdtr3);
+}
+
+/*-----------------------------------------------------------------------------+
+ * program_bxcf.
+ *-----------------------------------------------------------------------------*/
+static void program_bxcf(unsigned long *dimm_populated,
+			 unsigned char *iic0_dimm_addr,
+			 unsigned long num_dimm_banks)
+{
+	unsigned long dimm_num;
+	unsigned long num_col_addr;
+	unsigned long num_ranks;
+	unsigned long num_banks;
+	unsigned long mode;
+	unsigned long ind_rank;
+	unsigned long ind;
+	unsigned long ind_bank;
+	unsigned long bank_0_populated;
+
+	/*------------------------------------------------------------------
+	 * Set the BxCF regs.  First, wipe out the bank config registers.
+	 *-----------------------------------------------------------------*/
+	mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
+	mtdcr(SDRAMC_CFGDATA, 0x00000000);
+	mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
+	mtdcr(SDRAMC_CFGDATA, 0x00000000);
+	mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
+	mtdcr(SDRAMC_CFGDATA, 0x00000000);
+	mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
+	mtdcr(SDRAMC_CFGDATA, 0x00000000);
+
+	mode = SDRAM_BXCF_M_BE_ENABLE;
+
+	bank_0_populated = 0;
+
+	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+		if (dimm_populated[dimm_num] != SDRAM_NONE) {
+			num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
+			num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
+			if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
+				num_ranks = (num_ranks & 0x0F) +1;
+			else
+				num_ranks = num_ranks & 0x0F;
+
+			num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
+
+			for (ind_bank = 0; ind_bank < 2; ind_bank++) {
+				if (num_banks == 4)
+					ind = 0;
+				else
+					ind = 5;
+				switch (num_col_addr) {
+				case 0x08:
+					mode |= (SDRAM_BXCF_M_AM_0 + ind);
+					break;
+				case 0x09:
+					mode |= (SDRAM_BXCF_M_AM_1 + ind);
+					break;
+				case 0x0A:
+					mode |= (SDRAM_BXCF_M_AM_2 + ind);
+					break;
+				case 0x0B:
+					mode |= (SDRAM_BXCF_M_AM_3 + ind);
+					break;
+				case 0x0C:
+					mode |= (SDRAM_BXCF_M_AM_4 + ind);
+					break;
+				default:
+					printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
+					       (unsigned int)dimm_num);
+					printf("ERROR: Unsupported value for number of "
+					       "column addresses: %d.\n", (unsigned int)num_col_addr);
+					printf("Replace the DIMM module with a supported DIMM.\n\n");
+					hang();
+				}
+			}
+
+			if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
+				bank_0_populated = 1;
+
+			for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
+				mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
+				mtdcr(SDRAMC_CFGDATA, mode);
+			}
+		}
+	}
+}
+
+/*------------------------------------------------------------------
+ * program memory queue.
+ *-----------------------------------------------------------------*/
+static void program_memory_queue(unsigned long *dimm_populated,
+				 unsigned char *iic0_dimm_addr,
+				 unsigned long num_dimm_banks)
+{
+	unsigned long dimm_num;
+	unsigned long rank_base_addr;
+	unsigned long rank_reg;
+	unsigned long rank_size_bytes;
+	unsigned long rank_size_id;
+	unsigned long num_ranks;
+	unsigned long baseadd_size;
+	unsigned long i;
+	unsigned long bank_0_populated = 0;
+
+	/*------------------------------------------------------------------
+	 * Reset the rank_base_address.
+	 *-----------------------------------------------------------------*/
+	rank_reg   = SDRAM_R0BAS;
+
+	rank_base_addr = 0x00000000;
+
+	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+		if (dimm_populated[dimm_num] != SDRAM_NONE) {
+			num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
+			if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
+				num_ranks = (num_ranks & 0x0F) + 1;
+			else
+				num_ranks = num_ranks & 0x0F;
+
+			rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
+
+			/*------------------------------------------------------------------
+			 * Set the sizes
+			 *-----------------------------------------------------------------*/
+			baseadd_size = 0;
+			rank_size_bytes = 1024 * 1024 * rank_size_id;
+			switch (rank_size_id) {
+			case 0x02:
+				baseadd_size |= SDRAM_RXBAS_SDSZ_8;
+				break;
+			case 0x04:
+				baseadd_size |= SDRAM_RXBAS_SDSZ_16;
+				break;
+			case 0x08:
+				baseadd_size |= SDRAM_RXBAS_SDSZ_32;
+				break;
+			case 0x10:
+				baseadd_size |= SDRAM_RXBAS_SDSZ_64;
+				break;
+			case 0x20:
+				baseadd_size |= SDRAM_RXBAS_SDSZ_128;
+				break;
+			case 0x40:
+				baseadd_size |= SDRAM_RXBAS_SDSZ_256;
+				break;
+			case 0x80:
+				baseadd_size |= SDRAM_RXBAS_SDSZ_512;
+				break;
+			default:
+				printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
+				       (unsigned int)dimm_num);
+				printf("ERROR: Unsupported value for the banksize: %d.\n",
+				       (unsigned int)rank_size_id);
+				printf("Replace the DIMM module with a supported DIMM.\n\n");
+				hang();
+			}
+
+			if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
+				bank_0_populated = 1;
+
+			for (i = 0; i < num_ranks; i++)	{
+				mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
+					  (rank_base_addr & SDRAM_RXBAS_SDBA_MASK) |
+					  baseadd_size);
+				rank_base_addr += rank_size_bytes;
+			}
+		}
+	}
+}
+
+/*-----------------------------------------------------------------------------+
+ * is_ecc_enabled.
+ *-----------------------------------------------------------------------------*/
+static unsigned long is_ecc_enabled(void)
+{
+	unsigned long dimm_num;
+	unsigned long ecc;
+	unsigned long val;
+
+	ecc = 0;
+	/* loop through all the DIMM slots on the board */
+	for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
+		mfsdram(SDRAM_MCOPT1, val);
+		ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
+	}
+
+	return(ecc);
+}
+
+/*-----------------------------------------------------------------------------+
+ * program_ecc.
+ *-----------------------------------------------------------------------------*/
+static void program_ecc(unsigned long *dimm_populated,
+			unsigned char *iic0_dimm_addr,
+			unsigned long num_dimm_banks)
+{
+	unsigned long mcopt1;
+	unsigned long mcopt2;
+	unsigned long mcstat;
+	unsigned long dimm_num;
+	unsigned long ecc;
+
+	ecc = 0;
+	/* loop through all the DIMM slots on the board */
+	for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
+		/* If a dimm is installed in a particular slot ... */
+		if (dimm_populated[dimm_num] != SDRAM_NONE)
+			ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
+	}
+	if (ecc == 0)
+		return;
+
+	mfsdram(SDRAM_MCOPT1, mcopt1);
+	mfsdram(SDRAM_MCOPT2, mcopt2);
+
+	if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
+		/* DDR controller must be enabled and not in self-refresh. */
+		mfsdram(SDRAM_MCSTAT, mcstat);
+		if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
+		    && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
+		    && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
+			== (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
+
+			program_ecc_addr(0, sdram_memsize());
+		}
+	}
+
+	return;
+}
+
+/*-----------------------------------------------------------------------------+
+ * program_ecc_addr.
+ *-----------------------------------------------------------------------------*/
+static void program_ecc_addr(unsigned long start_address,
+			     unsigned long num_bytes)
+{
+	unsigned long current_address;
+	unsigned long end_address;
+	unsigned long address_increment;
+	unsigned long mcopt1;
+
+	current_address = start_address;
+	mfsdram(SDRAM_MCOPT1, mcopt1);
+	if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
+		mtsdram(SDRAM_MCOPT1,
+			(mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
+		sync();
+		eieio();
+		wait_ddr_idle();
+
+		/* ECC bit set method for non-cached memory */
+		if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
+			address_increment = 4;
+		else
+			address_increment = 8;
+		end_address = current_address + num_bytes;
+
+		while (current_address < end_address) {
+			*((unsigned long *)current_address) = 0x00000000;
+			current_address += address_increment;
+		}
+		sync();
+		eieio();
+		wait_ddr_idle();
+
+		mtsdram(SDRAM_MCOPT1,
+			(mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK);
+		sync();
+		eieio();
+		wait_ddr_idle();
+	}
+}
+
+/*-----------------------------------------------------------------------------+
+ * program_DQS_calibration.
+ *-----------------------------------------------------------------------------*/
+static void program_DQS_calibration(unsigned long *dimm_populated,
+				    unsigned char *iic0_dimm_addr,
+				    unsigned long num_dimm_banks)
+{
+	unsigned long val;
+
+#ifdef HARD_CODED_DQS /* calibration test with hardvalues */
+	mtsdram(SDRAM_RQDC, 0x80000037);
+	mtsdram(SDRAM_RDCC, 0x40000000);
+	mtsdram(SDRAM_RFDC, 0x000001DF);
+
+	test();
+#else
+	/*------------------------------------------------------------------
+	 * Program RDCC register
+	 * Read sample cycle auto-update enable
+	 *-----------------------------------------------------------------*/
+
+	/*
+	 * Modified for the Katmai platform:  with some DIMMs, the DDR2
+	 * controller automatically selects the T2 read cycle, but this
+	 * proves unreliable.  Go ahead and force the DDR2 controller
+	 * to use the T4 sample and disable the automatic update of the
+	 * RDSS field.
+	 */
+	mfsdram(SDRAM_RDCC, val);
+	mtsdram(SDRAM_RDCC,
+		(val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
+		| (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
+
+	/*------------------------------------------------------------------
+	 * Program RQDC register
+	 * Internal DQS delay mechanism enable
+	 *-----------------------------------------------------------------*/
+	mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
+
+	/*------------------------------------------------------------------
+	 * Program RFDC register
+	 * Set Feedback Fractional Oversample
+	 * Auto-detect read sample cycle enable
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_RFDC, val);
+	mtsdram(SDRAM_RFDC,
+		(val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
+			 SDRAM_RFDC_RFFD_MASK))
+		| (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
+		   SDRAM_RFDC_RFFD_ENCODE(0)));
+
+	DQS_calibration_process();
+#endif
+}
+
+static u32 short_mem_test(void)
+{
+	u32 *membase;
+	u32 bxcr_num;
+	u32 bxcf;
+	int i;
+	int j;
+	u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
+		{0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
+		 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
+		{0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
+		 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
+		{0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
+		 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
+		{0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
+		 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
+		{0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
+		 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
+		{0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
+		 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
+		{0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
+		 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
+		{0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
+		 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
+
+	for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
+		mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
+
+		/* Banks enabled */
+		if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
+
+			/* Bank is enabled */
+			membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
+
+			/*------------------------------------------------------------------
+			 * Run the short memory test.
+			 *-----------------------------------------------------------------*/
+			for (i = 0; i < NUMMEMTESTS; i++) {
+				for (j = 0; j < NUMMEMWORDS; j++) {
+					membase[j] = test[i][j];
+					ppcDcbf((u32)&(membase[j]));
+				}
+				sync();
+				for (j = 0; j < NUMMEMWORDS; j++) {
+					if (membase[j] != test[i][j]) {
+						ppcDcbf((u32)&(membase[j]));
+						break;
+					}
+					ppcDcbf((u32)&(membase[j]));
+				}
+				sync();
+				if (j < NUMMEMWORDS)
+					break;
+			}
+			if (i < NUMMEMTESTS)
+				break;
+		}	/* if bank enabled */
+	}		/* for bxcf_num */
+
+	return bxcr_num;
+}
+
+#ifndef HARD_CODED_DQS
+/*-----------------------------------------------------------------------------+
+ * DQS_calibration_process.
+ *-----------------------------------------------------------------------------*/
+static void DQS_calibration_process(void)
+{
+	unsigned long ecc_temp;
+	unsigned long rfdc_reg;
+	unsigned long rffd;
+	unsigned long rqdc_reg;
+	unsigned long rqfd;
+	unsigned long bxcr_num;
+	unsigned long val;
+	long rqfd_average;
+	long rffd_average;
+	long max_start;
+	long min_end;
+	unsigned long begin_rqfd[MAXRANKS];
+	unsigned long begin_rffd[MAXRANKS];
+	unsigned long end_rqfd[MAXRANKS];
+	unsigned long end_rffd[MAXRANKS];
+	char window_found;
+	unsigned long dlycal;
+	unsigned long dly_val;
+	unsigned long max_pass_length;
+	unsigned long current_pass_length;
+	unsigned long current_fail_length;
+	unsigned long current_start;
+	long max_end;
+	unsigned char fail_found;
+	unsigned char pass_found;
+
+	/*------------------------------------------------------------------
+	 * Test to determine the best read clock delay tuning bits.
+	 *
+	 * Before the DDR controller can be used, the read clock delay needs to be
+	 * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
+	 * This value cannot be hardcoded into the program because it changes
+	 * depending on the board's setup and environment.
+	 * To do this, all delay values are tested to see if they
+	 * work or not.  By doing this, you get groups of fails with groups of
+	 * passing values.  The idea is to find the start and end of a passing
+	 * window and take the center of it to use as the read clock delay.
+	 *
+	 * A failure has to be seen first so that when we hit a pass, we know
+	 * that it is truely the start of the window.  If we get passing values
+	 * to start off with, we don't know if we are at the start of the window.
+	 *
+	 * The code assumes that a failure will always be found.
+	 * If a failure is not found, there is no easy way to get the middle
+	 * of the passing window.  I guess we can pretty much pick any value
+	 * but some values will be better than others.  Since the lowest speed
+	 * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
+	 * from experimentation it is safe to say you will always have a failure.
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_MCOPT1, ecc_temp);
+	ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
+	mfsdram(SDRAM_MCOPT1, val);
+	mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
+		SDRAM_MCOPT1_MCHK_NON);
+
+	max_start = 0;
+	min_end = 0;
+	begin_rqfd[0] = 0;
+	begin_rffd[0] = 0;
+	begin_rqfd[1] = 0;
+	begin_rffd[1] = 0;
+	end_rqfd[0] = 0;
+	end_rffd[0] = 0;
+	end_rqfd[1] = 0;
+	end_rffd[1] = 0;
+	window_found = FALSE;
+
+	max_pass_length = 0;
+	max_start = 0;
+	max_end = 0;
+	current_pass_length = 0;
+	current_fail_length = 0;
+	current_start = 0;
+	window_found = FALSE;
+	fail_found = FALSE;
+	pass_found = FALSE;
+
+	/* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
+	/* rqdc_reg = mfsdram(SDRAM_RQDC) & ~(SDRAM_RQDC_RQFD_MASK); */
+
+	/*
+	 * get the delay line calibration register value
+	 */
+	mfsdram(SDRAM_DLCR, dlycal);
+	dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
+
+	for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
+		mfsdram(SDRAM_RFDC, rfdc_reg);
+		rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
+
+		/*------------------------------------------------------------------
+		 * Set the timing reg for the test.
+		 *-----------------------------------------------------------------*/
+		mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
+
+		/* do the small memory test */
+		bxcr_num = short_mem_test();
+
+		/*------------------------------------------------------------------
+		 * See if the rffd value passed.
+		 *-----------------------------------------------------------------*/
+		if (bxcr_num == MAXBXCF) {
+			if (fail_found == TRUE) {
+				pass_found = TRUE;
+				if (current_pass_length == 0)
+					current_start = rffd;
+
+				current_fail_length = 0;
+				current_pass_length++;
+
+				if (current_pass_length > max_pass_length) {
+					max_pass_length = current_pass_length;
+					max_start = current_start;
+					max_end = rffd;
+				}
+			}
+		} else {
+			current_pass_length = 0;
+			current_fail_length++;
+
+			if (current_fail_length >= (dly_val >> 2)) {
+				if (fail_found == FALSE) {
+					fail_found = TRUE;
+				} else if (pass_found == TRUE) {
+					window_found = TRUE;
+					break;
+				}
+			}
+		}
+	}		/* for rffd */
+
+
+	/*------------------------------------------------------------------
+	 * Set the average RFFD value
+	 *-----------------------------------------------------------------*/
+	rffd_average = ((max_start + max_end) >> 1);
+
+	if (rffd_average < 0)
+		rffd_average = 0;
+
+	if (rffd_average > SDRAM_RFDC_RFFD_MAX)
+		rffd_average = SDRAM_RFDC_RFFD_MAX;
+	/* now fix RFDC[RFFD] found and find RQDC[RQFD] */
+	mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
+
+	max_pass_length = 0;
+	max_start = 0;
+	max_end = 0;
+	current_pass_length = 0;
+	current_fail_length = 0;
+	current_start = 0;
+	window_found = FALSE;
+	fail_found = FALSE;
+	pass_found = FALSE;
+
+	for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
+		mfsdram(SDRAM_RQDC, rqdc_reg);
+		rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
+
+		/*------------------------------------------------------------------
+		 * Set the timing reg for the test.
+		 *-----------------------------------------------------------------*/
+		mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
+
+		/* do the small memory test */
+		bxcr_num = short_mem_test();
+
+		/*------------------------------------------------------------------
+		 * See if the rffd value passed.
+		 *-----------------------------------------------------------------*/
+		if (bxcr_num == MAXBXCF) {
+			if (fail_found == TRUE) {
+				pass_found = TRUE;
+				if (current_pass_length == 0)
+					current_start = rqfd;
+
+				current_fail_length = 0;
+				current_pass_length++;
+
+				if (current_pass_length > max_pass_length) {
+					max_pass_length = current_pass_length;
+					max_start = current_start;
+					max_end = rqfd;
+				}
+			}
+		} else {
+			current_pass_length = 0;
+			current_fail_length++;
+
+			if (fail_found == FALSE) {
+				fail_found = TRUE;
+			} else if (pass_found == TRUE) {
+				window_found = TRUE;
+				break;
+			}
+		}
+	}
+
+	/*------------------------------------------------------------------
+	 * Make sure we found the valid read passing window.  Halt if not
+	 *-----------------------------------------------------------------*/
+	if (window_found == FALSE) {
+		printf("ERROR: Cannot determine a common read delay for the "
+		       "DIMM(s) installed.\n");
+		debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
+		hang();
+	}
+
+	rqfd_average = ((max_start + max_end) >> 1);
+
+	if (rqfd_average < 0)
+		rqfd_average = 0;
+
+	if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
+		rqfd_average = SDRAM_RQDC_RQFD_MAX;
+
+	/*------------------------------------------------------------------
+	 * Restore the ECC variable to what it originally was
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_MCOPT1, val);
+	mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) | ecc_temp);
+
+	mtsdram(SDRAM_RQDC,
+		(rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
+		SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
+
+	mfsdram(SDRAM_DLCR, val);
+	debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
+	mfsdram(SDRAM_RQDC, val);
+	debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
+	mfsdram(SDRAM_RFDC, val);
+	debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
+}
+#else /* calibration test with hardvalues */
+/*-----------------------------------------------------------------------------+
+ * DQS_calibration_process.
+ *-----------------------------------------------------------------------------*/
+static void test(void)
+{
+	unsigned long dimm_num;
+	unsigned long ecc_temp;
+	unsigned long i, j;
+	unsigned long *membase;
+	unsigned long bxcf[MAXRANKS];
+	unsigned long val;
+	char window_found;
+	char begin_found[MAXDIMMS];
+	char end_found[MAXDIMMS];
+	char search_end[MAXDIMMS];
+	unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
+		{0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
+		 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
+		{0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
+		 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
+		{0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
+		 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
+		{0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
+		 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
+		{0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
+		 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
+		{0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
+		 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
+		{0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
+		 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
+		{0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
+		 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
+
+	/*------------------------------------------------------------------
+	 * Test to determine the best read clock delay tuning bits.
+	 *
+	 * Before the DDR controller can be used, the read clock delay needs to be
+	 * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
+	 * This value cannot be hardcoded into the program because it changes
+	 * depending on the board's setup and environment.
+	 * To do this, all delay values are tested to see if they
+	 * work or not.  By doing this, you get groups of fails with groups of
+	 * passing values.  The idea is to find the start and end of a passing
+	 * window and take the center of it to use as the read clock delay.
+	 *
+	 * A failure has to be seen first so that when we hit a pass, we know
+	 * that it is truely the start of the window.  If we get passing values
+	 * to start off with, we don't know if we are at the start of the window.
+	 *
+	 * The code assumes that a failure will always be found.
+	 * If a failure is not found, there is no easy way to get the middle
+	 * of the passing window.  I guess we can pretty much pick any value
+	 * but some values will be better than others.  Since the lowest speed
+	 * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
+	 * from experimentation it is safe to say you will always have a failure.
+	 *-----------------------------------------------------------------*/
+	mfsdram(SDRAM_MCOPT1, ecc_temp);
+	ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
+	mfsdram(SDRAM_MCOPT1, val);
+	mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
+		SDRAM_MCOPT1_MCHK_NON);
+
+	window_found = FALSE;
+	begin_found[0] = FALSE;
+	end_found[0] = FALSE;
+	search_end[0] = FALSE;
+	begin_found[1] = FALSE;
+	end_found[1] = FALSE;
+	search_end[1] = FALSE;
+
+	for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
+		mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
+
+		/* Banks enabled */
+		if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
+
+			/* Bank is enabled */
+			membase =
+				(unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
+
+			/*------------------------------------------------------------------
+			 * Run the short memory test.
+			 *-----------------------------------------------------------------*/
+			for (i = 0; i < NUMMEMTESTS; i++) {
+				for (j = 0; j < NUMMEMWORDS; j++) {
+					membase[j] = test[i][j];
+					ppcDcbf((u32)&(membase[j]));
+				}
+				sync();
+				for (j = 0; j < NUMMEMWORDS; j++) {
+					if (membase[j] != test[i][j]) {
+						ppcDcbf((u32)&(membase[j]));
+						break;
+					}
+					ppcDcbf((u32)&(membase[j]));
+				}
+				sync();
+				if (j < NUMMEMWORDS)
+					break;
+			}
+
+			/*------------------------------------------------------------------
+			 * See if the rffd value passed.
+			 *-----------------------------------------------------------------*/
+			if (i < NUMMEMTESTS) {
+				if ((end_found[dimm_num] == FALSE) &&
+				    (search_end[dimm_num] == TRUE)) {
+					end_found[dimm_num] = TRUE;
+				}
+				if ((end_found[0] == TRUE) &&
+				    (end_found[1] == TRUE))
+					break;
+			} else {
+				if (begin_found[dimm_num] == FALSE) {
+					begin_found[dimm_num] = TRUE;
+					search_end[dimm_num] = TRUE;
+				}
+			}
+		} else {
+			begin_found[dimm_num] = TRUE;
+			end_found[dimm_num] = TRUE;
+		}
+	}
+
+	if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
+		window_found = TRUE;
+
+	/*------------------------------------------------------------------
+	 * Make sure we found the valid read passing window.  Halt if not
+	 *-----------------------------------------------------------------*/
+	if (window_found == FALSE) {
+		printf("ERROR: Cannot determine a common read delay for the "
+		       "DIMM(s) installed.\n");
+		hang();
+	}
+
+	/*------------------------------------------------------------------
+	 * Restore the ECC variable to what it originally was
+	 *-----------------------------------------------------------------*/
+	mtsdram(SDRAM_MCOPT1,
+		(ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
+		| ecc_temp);
+}
+#endif
+
+#if defined(DEBUG)
+static void ppc440sp_sdram_register_dump(void)
+{
+	unsigned int sdram_reg;
+	unsigned int sdram_data;
+	unsigned int dcr_data;
+
+	printf("\n  Register Dump:\n");
+	sdram_reg = SDRAM_MCSTAT;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_MCSTAT    = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_MCOPT1;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_MCOPT1    = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_MCOPT2;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_MCOPT2    = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_MODT0;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_MODT0     = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_MODT1;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_MODT1     = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_MODT2;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_MODT2     = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_MODT3;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_MODT3     = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_CODT;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_CODT      = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_VVPR;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_VVPR      = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_OPARS;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_OPARS     = 0x%08X\n", sdram_data);
+	/*
+	 * OPAR2 is only used as a trigger register.
+	 * No data is contained in this register, and reading or writing
+	 * to is can cause bad things to happen (hangs).  Just skip it
+	 * and report NA
+	 * sdram_reg = SDRAM_OPAR2;
+	 * mfsdram(sdram_reg, sdram_data);
+	 * printf("        SDRAM_OPAR2     = 0x%08X\n", sdram_data);
+	 */
+	printf("        SDRAM_OPART     = N/A       ");
+	sdram_reg = SDRAM_RTR;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_RTR       = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_MB0CF;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_MB0CF     = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_MB1CF;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_MB1CF     = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_MB2CF;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_MB2CF     = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_MB3CF;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_MB3CF     = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_INITPLR0;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR0  = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_INITPLR1;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR1  = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_INITPLR2;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR2  = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_INITPLR3;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR3  = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_INITPLR4;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR4  = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_INITPLR5;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR5  = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_INITPLR6;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR6  = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_INITPLR7;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR7  = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_INITPLR8;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR8  = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_INITPLR9;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR9  = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_INITPLR10;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR10 = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_INITPLR11;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_INITPLR12;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR12 = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_INITPLR13;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_INITPLR14;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR14 = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_INITPLR15;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_RQDC;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_RQDC      = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_RFDC;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_RFDC      = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_RDCC;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_RDCC      = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_DLCR;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_DLCR      = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_CLKTR;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_CLKTR     = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_WRDTR;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_WRDTR     = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_SDTR1;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_SDTR1     = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_SDTR2;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_SDTR2     = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_SDTR3;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_SDTR3     = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_MMODE;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_MMODE     = 0x%08X\n", sdram_data);
+	sdram_reg = SDRAM_MEMODE;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_MEMODE    = 0x%08X", sdram_data);
+	sdram_reg = SDRAM_ECCCR;
+	mfsdram(sdram_reg, sdram_data);
+	printf("        SDRAM_ECCCR     = 0x%08X\n\n", sdram_data);
+
+	dcr_data = mfdcr(SDRAM_R0BAS);
+	printf("        MQ0_B0BAS       = 0x%08X", dcr_data);
+	dcr_data = mfdcr(SDRAM_R1BAS);
+	printf("        MQ1_B0BAS       = 0x%08X\n", dcr_data);
+	dcr_data = mfdcr(SDRAM_R2BAS);
+	printf("        MQ2_B0BAS       = 0x%08X", dcr_data);
+	dcr_data = mfdcr(SDRAM_R3BAS);
+	printf("        MQ3_B0BAS       = 0x%08X\n", dcr_data);
+}
+#endif
+#endif /* CONFIG_SPD_EEPROM */
diff --git a/cpu/ppc4xx/tlb.c b/cpu/ppc4xx/tlb.c
new file mode 100644
index 0000000000000000000000000000000000000000..8c605591b8103d466ebede3ac46b6c98117ca5bb
--- /dev/null
+++ b/cpu/ppc4xx/tlb.c
@@ -0,0 +1,184 @@
+/*
+ * (C) Copyright 2007
+ * Stefan Roese, DENX Software Engineering, sr@denx.de.
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#include <common.h>
+
+#if defined(CONFIG_440)
+
+#include <ppc4xx.h>
+#include <ppc440.h>
+#include <asm/io.h>
+#include <asm/mmu.h>
+
+typedef struct region {
+	unsigned long base;
+	unsigned long size;
+	unsigned long tlb_word2_i_value;
+} region_t;
+
+static int add_tlb_entry(unsigned long base_addr,
+                         unsigned long tlb_word0_size_value,
+                         unsigned long tlb_word2_i_value)
+{
+	int i;
+	unsigned long tlb_word0_value;
+	unsigned long tlb_word1_value;
+	unsigned long tlb_word2_value;
+
+	/* First, find the index of a TLB entry not being used */
+	for (i=0; i<PPC4XX_TLB_SIZE; i++) {
+		tlb_word0_value = mftlb1(i);
+		if ((tlb_word0_value & TLB_WORD0_V_MASK) == TLB_WORD0_V_DISABLE)
+			break;
+	}
+	if (i >= PPC4XX_TLB_SIZE)
+		return -1;
+
+	/* Second, create the TLB entry */
+	tlb_word0_value = TLB_WORD0_EPN_ENCODE(base_addr) | TLB_WORD0_V_ENABLE |
+		TLB_WORD0_TS_0 | tlb_word0_size_value;
+	tlb_word1_value = TLB_WORD1_RPN_ENCODE(base_addr) | TLB_WORD1_ERPN_ENCODE(0);
+	tlb_word2_value = TLB_WORD2_U0_DISABLE | TLB_WORD2_U1_DISABLE |
+		TLB_WORD2_U2_DISABLE | TLB_WORD2_U3_DISABLE |
+		TLB_WORD2_W_DISABLE | tlb_word2_i_value |
+		TLB_WORD2_M_DISABLE | TLB_WORD2_G_DISABLE |
+		TLB_WORD2_E_DISABLE | TLB_WORD2_UX_ENABLE |
+		TLB_WORD2_UW_ENABLE | TLB_WORD2_UR_ENABLE |
+		TLB_WORD2_SX_ENABLE | TLB_WORD2_SW_ENABLE |
+		TLB_WORD2_SR_ENABLE;
+
+	/* Wait for all memory accesses to complete */
+	sync();
+
+	/* Third, add the TLB entries */
+	mttlb1(i, tlb_word0_value);
+	mttlb2(i, tlb_word1_value);
+	mttlb3(i, tlb_word2_value);
+
+	/* Execute an ISYNC instruction so that the new TLB entry takes effect */
+	asm("isync");
+
+	return 0;
+}
+
+static void program_tlb_addr(unsigned long base_addr, unsigned long mem_size,
+                             unsigned long tlb_word2_i_value)
+{
+	int rc;
+	int tlb_i;
+
+	tlb_i = tlb_word2_i_value;
+	while (mem_size != 0) {
+		rc = 0;
+		/* Add the TLB entries in to map the region. */
+		if (((base_addr & TLB_256MB_ALIGN_MASK) == base_addr) &&
+		    (mem_size >= TLB_256MB_SIZE)) {
+			/* Add a 256MB TLB entry */
+			if ((rc = add_tlb_entry(base_addr, TLB_WORD0_SIZE_256MB, tlb_i)) == 0) {
+				mem_size -= TLB_256MB_SIZE;
+				base_addr += TLB_256MB_SIZE;
+			}
+		} else if (((base_addr & TLB_16MB_ALIGN_MASK) == base_addr) &&
+			   (mem_size >= TLB_16MB_SIZE)) {
+			/* Add a 16MB TLB entry */
+			if ((rc = add_tlb_entry(base_addr, TLB_WORD0_SIZE_16MB, tlb_i)) == 0) {
+				mem_size -= TLB_16MB_SIZE;
+				base_addr += TLB_16MB_SIZE;
+			}
+		} else if (((base_addr & TLB_1MB_ALIGN_MASK) == base_addr) &&
+			   (mem_size >= TLB_1MB_SIZE)) {
+			/* Add a 1MB TLB entry */
+			if ((rc = add_tlb_entry(base_addr, TLB_WORD0_SIZE_1MB, tlb_i)) == 0) {
+				mem_size -= TLB_1MB_SIZE;
+				base_addr += TLB_1MB_SIZE;
+			}
+		} else if (((base_addr & TLB_256KB_ALIGN_MASK) == base_addr) &&
+			   (mem_size >= TLB_256KB_SIZE)) {
+			/* Add a 256KB TLB entry */
+			if ((rc = add_tlb_entry(base_addr, TLB_WORD0_SIZE_256KB, tlb_i)) == 0) {
+				mem_size -= TLB_256KB_SIZE;
+				base_addr += TLB_256KB_SIZE;
+			}
+		} else if (((base_addr & TLB_64KB_ALIGN_MASK) == base_addr) &&
+			   (mem_size >= TLB_64KB_SIZE)) {
+			/* Add a 64KB TLB entry */
+			if ((rc = add_tlb_entry(base_addr, TLB_WORD0_SIZE_64KB, tlb_i)) == 0) {
+				mem_size -= TLB_64KB_SIZE;
+				base_addr += TLB_64KB_SIZE;
+			}
+		} else if (((base_addr & TLB_16KB_ALIGN_MASK) == base_addr) &&
+			   (mem_size >= TLB_16KB_SIZE)) {
+			/* Add a 16KB TLB entry */
+			if ((rc = add_tlb_entry(base_addr, TLB_WORD0_SIZE_16KB, tlb_i)) == 0) {
+				mem_size -= TLB_16KB_SIZE;
+				base_addr += TLB_16KB_SIZE;
+			}
+		} else if (((base_addr & TLB_4KB_ALIGN_MASK) == base_addr) &&
+			   (mem_size >= TLB_4KB_SIZE)) {
+			/* Add a 4KB TLB entry */
+			if ((rc = add_tlb_entry(base_addr, TLB_WORD0_SIZE_4KB, tlb_i)) == 0) {
+				mem_size -= TLB_4KB_SIZE;
+				base_addr += TLB_4KB_SIZE;
+			}
+		} else if (((base_addr & TLB_1KB_ALIGN_MASK) == base_addr) &&
+			   (mem_size >= TLB_1KB_SIZE)) {
+			/* Add a 1KB TLB entry */
+			if ((rc = add_tlb_entry(base_addr, TLB_WORD0_SIZE_1KB, tlb_i)) == 0) {
+				mem_size -= TLB_1KB_SIZE;
+				base_addr += TLB_1KB_SIZE;
+			}
+		} else {
+			printf("ERROR: no TLB size exists for the base address 0x%0X.\n",
+				base_addr);
+		}
+
+		if (rc != 0)
+			printf("ERROR: no TLB entries available for the base addr 0x%0X.\n",
+				base_addr);
+	}
+
+	return;
+}
+
+/*
+ * Program one (or multiple) TLB entries for one memory region
+ *
+ * Common usage for boards with SDRAM DIMM modules to dynamically
+ * configure the TLB's for the SDRAM
+ */
+void program_tlb(u32 start, u32 size)
+{
+	region_t region_array;
+
+	region_array.base = start;
+	region_array.size = size;
+	region_array.tlb_word2_i_value = TLB_WORD2_I_ENABLE;	/* disable cache (for now) */
+
+	/* Call the routine to add in the tlb entries for the memory regions */
+	program_tlb_addr(region_array.base, region_array.size,
+			 region_array.tlb_word2_i_value);
+
+	return;
+}
+
+#endif /* CONFIG_440 */
diff --git a/include/asm-ppc/mmu.h b/include/asm-ppc/mmu.h
index 914f28b46174b157cc63c1a4e5a571a50ecaf048..b226825ee20681a7db246e5082f9a414a1890915 100644
--- a/include/asm-ppc/mmu.h
+++ b/include/asm-ppc/mmu.h
@@ -335,41 +335,6 @@ extern int write_bat(ppc_bat_t bat, unsigned long upper, unsigned long lower);
  * instructions.
  */
 
-#define	TLB_LO          1
-#define	TLB_HI          0
-
-#define	TLB_DATA        TLB_LO
-#define	TLB_TAG         TLB_HI
-
-/* Tag portion */
-
-#define TLB_EPN_MASK    0xFFFFFC00      /* Effective Page Number */
-#define TLB_PAGESZ_MASK 0x00000380
-#define TLB_PAGESZ(x)   (((x) & 0x7) << 7)
-#define   PAGESZ_1K		0
-#define   PAGESZ_4K             1
-#define   PAGESZ_16K            2
-#define   PAGESZ_64K            3
-#define   PAGESZ_256K           4
-#define   PAGESZ_1M             5
-#define   PAGESZ_4M             6
-#define   PAGESZ_16M            7
-#define TLB_VALID       0x00000040      /* Entry is valid */
-
-/* Data portion */
-
-#define TLB_RPN_MASK    0xFFFFFC00      /* Real Page Number */
-#define TLB_PERM_MASK   0x00000300
-#define TLB_EX          0x00000200      /* Instruction execution allowed */
-#define TLB_WR          0x00000100      /* Writes permitted */
-#define TLB_ZSEL_MASK   0x000000F0
-#define TLB_ZSEL(x)     (((x) & 0xF) << 4)
-#define TLB_ATTR_MASK   0x0000000F
-#define TLB_W           0x00000008      /* Caching is write-through */
-#define TLB_I           0x00000004      /* Caching is inhibited */
-#define TLB_M           0x00000002      /* Memory is coherent */
-#define TLB_G           0x00000001      /* Memory is guarded from prefetch */
-
 /*
  * e500 support
  */
@@ -482,7 +447,162 @@ extern int write_bat(ppc_bat_t bat, unsigned long upper, unsigned long lower);
 #define LAWAR_SIZE_16G		(LAWAR_SIZE_BASE+23)
 #define LAWAR_SIZE_32G		(LAWAR_SIZE_BASE+24)
 
-#ifdef CONFIG_440SPE
+#ifdef CONFIG_440
+/* General */
+#define TLB_VALID   0x00000200
+
+/* Supported page sizes */
+
+#define SZ_1K	0x00000000
+#define SZ_4K	0x00000010
+#define SZ_16K	0x00000020
+#define SZ_64K	0x00000030
+#define SZ_256K	0x00000040
+#define SZ_1M	0x00000050
+#define SZ_16M	0x00000070
+#define SZ_256M	0x00000090
+
+/* Storage attributes */
+#define SA_W	0x00000800	/* Write-through */
+#define SA_I	0x00000400	/* Caching inhibited */
+#define SA_M	0x00000200	/* Memory coherence */
+#define SA_G	0x00000100	/* Guarded */
+#define SA_E	0x00000080	/* Endian */
+
+/* Access control */
+#define AC_X	0x00000024	/* Execute */
+#define AC_W	0x00000012	/* Write */
+#define AC_R	0x00000009	/* Read */
+
+/* Some handy macros */
+
+#define EPN(e)		((e) & 0xfffffc00)
+#define TLB0(epn,sz)	((EPN((epn)) | (sz) | TLB_VALID ))
+#define TLB1(rpn,erpn)	(((rpn) & 0xfffffc00) | (erpn))
+#define TLB2(a)		((a) & 0x00000fbf)
+
+#define tlbtab_start\
+	mflr	r1	;\
+	bl	0f	;
+
+#define tlbtab_end\
+	.long 0, 0, 0	;\
+0:	mflr	r0	;\
+	mtlr	r1	;\
+	blr		;
+
+#define tlbentry(epn,sz,rpn,erpn,attr)\
+	.long TLB0(epn,sz),TLB1(rpn,erpn),TLB2(attr)
+
+/*----------------------------------------------------------------------------+
+| TLB specific defines.
++----------------------------------------------------------------------------*/
+#define TLB_256MB_ALIGN_MASK 0xF0000000
+#define TLB_16MB_ALIGN_MASK  0xFF000000
+#define TLB_1MB_ALIGN_MASK   0xFFF00000
+#define TLB_256KB_ALIGN_MASK 0xFFFC0000
+#define TLB_64KB_ALIGN_MASK  0xFFFF0000
+#define TLB_16KB_ALIGN_MASK  0xFFFFC000
+#define TLB_4KB_ALIGN_MASK   0xFFFFF000
+#define TLB_1KB_ALIGN_MASK   0xFFFFFC00
+#define TLB_256MB_SIZE       0x10000000
+#define TLB_16MB_SIZE        0x01000000
+#define TLB_1MB_SIZE         0x00100000
+#define TLB_256KB_SIZE       0x00040000
+#define TLB_64KB_SIZE        0x00010000
+#define TLB_16KB_SIZE        0x00004000
+#define TLB_4KB_SIZE         0x00001000
+#define TLB_1KB_SIZE         0x00000400
+
+#define TLB_WORD0_EPN_MASK   0xFFFFFC00
+#define TLB_WORD0_EPN_ENCODE(n) (((unsigned long)(n))&0xFFFFFC00)
+#define TLB_WORD0_EPN_DECODE(n) (((unsigned long)(n))&0xFFFFFC00)
+#define TLB_WORD0_V_MASK     0x00000200
+#define TLB_WORD0_V_ENABLE   0x00000200
+#define TLB_WORD0_V_DISABLE  0x00000000
+#define TLB_WORD0_TS_MASK    0x00000100
+#define TLB_WORD0_TS_1       0x00000100
+#define TLB_WORD0_TS_0       0x00000000
+#define TLB_WORD0_SIZE_MASK  0x000000F0
+#define TLB_WORD0_SIZE_1KB   0x00000000
+#define TLB_WORD0_SIZE_4KB   0x00000010
+#define TLB_WORD0_SIZE_16KB  0x00000020
+#define TLB_WORD0_SIZE_64KB  0x00000030
+#define TLB_WORD0_SIZE_256KB 0x00000040
+#define TLB_WORD0_SIZE_1MB   0x00000050
+#define TLB_WORD0_SIZE_16MB  0x00000070
+#define TLB_WORD0_SIZE_256MB 0x00000090
+#define TLB_WORD0_TPAR_MASK  0x0000000F
+#define TLB_WORD0_TPAR_ENCODE(n) ((((unsigned long)(n))&0x0F)<<0)
+#define TLB_WORD0_TPAR_DECODE(n) ((((unsigned long)(n))>>0)&0x0F)
+
+#define TLB_WORD1_RPN_MASK   0xFFFFFC00
+#define TLB_WORD1_RPN_ENCODE(n) (((unsigned long)(n))&0xFFFFFC00)
+#define TLB_WORD1_RPN_DECODE(n) (((unsigned long)(n))&0xFFFFFC00)
+#define TLB_WORD1_PAR1_MASK  0x00000300
+#define TLB_WORD1_PAR1_ENCODE(n) ((((unsigned long)(n))&0x03)<<8)
+#define TLB_WORD1_PAR1_DECODE(n) ((((unsigned long)(n))>>8)&0x03)
+#define TLB_WORD1_PAR1_0     0x00000000
+#define TLB_WORD1_PAR1_1     0x00000100
+#define TLB_WORD1_PAR1_2     0x00000200
+#define TLB_WORD1_PAR1_3     0x00000300
+#define TLB_WORD1_ERPN_MASK  0x0000000F
+#define TLB_WORD1_ERPN_ENCODE(n) ((((unsigned long)(n))&0x0F)<<0)
+#define TLB_WORD1_ERPN_DECODE(n) ((((unsigned long)(n))>>0)&0x0F)
+
+#define TLB_WORD2_PAR2_MASK  0xC0000000
+#define TLB_WORD2_PAR2_ENCODE(n) ((((unsigned long)(n))&0x03)<<30)
+#define TLB_WORD2_PAR2_DECODE(n) ((((unsigned long)(n))>>30)&0x03)
+#define TLB_WORD2_PAR2_0     0x00000000
+#define TLB_WORD2_PAR2_1     0x40000000
+#define TLB_WORD2_PAR2_2     0x80000000
+#define TLB_WORD2_PAR2_3     0xC0000000
+#define TLB_WORD2_U0_MASK    0x00008000
+#define TLB_WORD2_U0_ENABLE  0x00008000
+#define TLB_WORD2_U0_DISABLE 0x00000000
+#define TLB_WORD2_U1_MASK    0x00004000
+#define TLB_WORD2_U1_ENABLE  0x00004000
+#define TLB_WORD2_U1_DISABLE 0x00000000
+#define TLB_WORD2_U2_MASK    0x00002000
+#define TLB_WORD2_U2_ENABLE  0x00002000
+#define TLB_WORD2_U2_DISABLE 0x00000000
+#define TLB_WORD2_U3_MASK    0x00001000
+#define TLB_WORD2_U3_ENABLE  0x00001000
+#define TLB_WORD2_U3_DISABLE 0x00000000
+#define TLB_WORD2_W_MASK     0x00000800
+#define TLB_WORD2_W_ENABLE   0x00000800
+#define TLB_WORD2_W_DISABLE  0x00000000
+#define TLB_WORD2_I_MASK     0x00000400
+#define TLB_WORD2_I_ENABLE   0x00000400
+#define TLB_WORD2_I_DISABLE  0x00000000
+#define TLB_WORD2_M_MASK     0x00000200
+#define TLB_WORD2_M_ENABLE   0x00000200
+#define TLB_WORD2_M_DISABLE  0x00000000
+#define TLB_WORD2_G_MASK     0x00000100
+#define TLB_WORD2_G_ENABLE   0x00000100
+#define TLB_WORD2_G_DISABLE  0x00000000
+#define TLB_WORD2_E_MASK     0x00000080
+#define TLB_WORD2_E_ENABLE   0x00000080
+#define TLB_WORD2_E_DISABLE  0x00000000
+#define TLB_WORD2_UX_MASK    0x00000020
+#define TLB_WORD2_UX_ENABLE  0x00000020
+#define TLB_WORD2_UX_DISABLE 0x00000000
+#define TLB_WORD2_UW_MASK    0x00000010
+#define TLB_WORD2_UW_ENABLE  0x00000010
+#define TLB_WORD2_UW_DISABLE 0x00000000
+#define TLB_WORD2_UR_MASK    0x00000008
+#define TLB_WORD2_UR_ENABLE  0x00000008
+#define TLB_WORD2_UR_DISABLE 0x00000000
+#define TLB_WORD2_SX_MASK    0x00000004
+#define TLB_WORD2_SX_ENABLE  0x00000004
+#define TLB_WORD2_SX_DISABLE 0x00000000
+#define TLB_WORD2_SW_MASK    0x00000002
+#define TLB_WORD2_SW_ENABLE  0x00000002
+#define TLB_WORD2_SW_DISABLE 0x00000000
+#define TLB_WORD2_SR_MASK    0x00000001
+#define TLB_WORD2_SR_ENABLE  0x00000001
+#define TLB_WORD2_SR_DISABLE 0x00000000
+
 /*----------------------------------------------------------------------------+
 | Following instructions are not available in Book E mode of the GNU assembler.
 +----------------------------------------------------------------------------*/
@@ -516,11 +636,15 @@ extern int write_bat(ppc_bat_t bat, unsigned long upper, unsigned long lower);
 #define MBAR_INST 				.long 0x7c000000|\
 					(854<<1)
 
-/*----------------------------------------------------------------------------+
-| Following instruction is not available in PPC405 mode of the GNU assembler.
-+----------------------------------------------------------------------------*/
-#define TLBRE(rt,ra,ws)			.long 0x7c000000|\
-					(rt<<21)|(ra<<16)|(ws<<11)|(946<<1)
+#ifndef __ASSEMBLY__
+/* Prototypes */
+void mttlb1(unsigned long index, unsigned long value);
+void mttlb2(unsigned long index, unsigned long value);
+void mttlb3(unsigned long index, unsigned long value);
+unsigned long mftlb1(unsigned long index);
+unsigned long mftlb2(unsigned long index);
+unsigned long mftlb3(unsigned long index);
+#endif /* __ASSEMBLY__ */
 
-#endif
+#endif /* CONFIG_440 */
 #endif /* _PPC_MMU_H_ */