diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 624310306ed3d03fba967b99ab980ee5d8a5bc6f..02449eecb92b7a04574b578d3097fa8a596009e9 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -42,6 +42,7 @@ COBJS-$(CONFIG_NAND_KB9202) += kb9202_nand.o
 COBJS-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o
 COBJS-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o
 COBJS-$(CONFIG_NAND_MPC5121_NFC) += mpc5121_nfc.o
+COBJS-$(CONFIG_NAND_MXC) += mxc_nand.o
 COBJS-$(CONFIG_NAND_NDFC) += ndfc.o
 COBJS-$(CONFIG_NAND_NOMADIK) += nomadik.o
 COBJS-$(CONFIG_NAND_S3C2410) += s3c2410_nand.o
diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c
new file mode 100644
index 0000000000000000000000000000000000000000..647be0b7ef347d2e59a192ddf4aca7702cf93a81
--- /dev/null
+++ b/drivers/mtd/nand/mxc_nand.c
@@ -0,0 +1,880 @@
+/*
+ * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
+ * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
+ * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
+ * MA 02110-1301, USA.
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <linux/err.h>
+#include <asm/io.h>
+#ifdef CONFIG_MX27
+#include <asm/arch/imx-regs.h>
+#endif
+
+#define DRIVER_NAME "mxc_nand"
+
+struct nfc_regs {
+/* NFC RAM BUFFER Main area 0 */
+	uint8_t main_area0[0x200];
+	uint8_t main_area1[0x200];
+	uint8_t main_area2[0x200];
+	uint8_t main_area3[0x200];
+/* SPARE BUFFER Spare area 0 */
+	uint8_t spare_area0[0x10];
+	uint8_t spare_area1[0x10];
+	uint8_t spare_area2[0x10];
+	uint8_t spare_area3[0x10];
+	uint8_t pad[0x5c0];
+/* NFC registers */
+	uint16_t nfc_buf_size;
+	uint16_t reserved;
+	uint16_t nfc_buf_addr;
+	uint16_t nfc_flash_addr;
+	uint16_t nfc_flash_cmd;
+	uint16_t nfc_config;
+	uint16_t nfc_ecc_status_result;
+	uint16_t nfc_rsltmain_area;
+	uint16_t nfc_rsltspare_area;
+	uint16_t nfc_wrprot;
+	uint16_t nfc_unlockstart_blkaddr;
+	uint16_t nfc_unlockend_blkaddr;
+	uint16_t nfc_nf_wrprst;
+	uint16_t nfc_config1;
+	uint16_t nfc_config2;
+};
+
+/*
+ * Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
+ * for Command operation
+ */
+#define NFC_CMD            0x1
+
+/*
+ * Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
+ * for Address operation
+ */
+#define NFC_ADDR           0x2
+
+/*
+ * Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
+ * for Input operation
+ */
+#define NFC_INPUT          0x4
+
+/*
+ * Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
+ * for Data Output operation
+ */
+#define NFC_OUTPUT         0x8
+
+/*
+ * Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
+ * for Read ID operation
+ */
+#define NFC_ID             0x10
+
+/*
+ * Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
+ * for Read Status operation
+ */
+#define NFC_STATUS         0x20
+
+/*
+ * Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
+ * Status operation
+ */
+#define NFC_INT            0x8000
+
+#define NFC_SP_EN           (1 << 2)
+#define NFC_ECC_EN          (1 << 3)
+#define NFC_BIG             (1 << 5)
+#define NFC_RST             (1 << 6)
+#define NFC_CE              (1 << 7)
+#define NFC_ONE_CYCLE       (1 << 8)
+
+typedef enum {false, true} bool;
+
+struct mxc_nand_host {
+	struct mtd_info		mtd;
+	struct nand_chip	*nand;
+
+	struct nfc_regs __iomem	*regs;
+	int			spare_only;
+	int			status_request;
+	int			pagesize_2k;
+	int			clk_act;
+	uint16_t		col_addr;
+};
+
+static struct mxc_nand_host mxc_host;
+static struct mxc_nand_host *host = &mxc_host;
+
+/* Define delays in microsec for NAND device operations */
+#define TROP_US_DELAY   2000
+/* Macros to get byte and bit positions of ECC */
+#define COLPOS(x)  ((x) >> 3)
+#define BITPOS(x) ((x) & 0xf)
+
+/* Define single bit Error positions in Main & Spare area */
+#define MAIN_SINGLEBIT_ERROR 0x4
+#define SPARE_SINGLEBIT_ERROR 0x1
+
+/* OOB placement block for use with hardware ecc generation */
+#ifdef CONFIG_MXC_NAND_HWECC
+static struct nand_ecclayout nand_hw_eccoob = {
+	.eccbytes = 5,
+	.eccpos = {6, 7, 8, 9, 10},
+	.oobfree = {{0, 5}, {11, 5}, }
+};
+#else
+static struct nand_ecclayout nand_soft_eccoob = {
+	.eccbytes = 6,
+	.eccpos = {6, 7, 8, 9, 10, 11},
+	.oobfree = {{0, 5}, {12, 4}, }
+};
+#endif
+
+static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
+{
+	uint32_t *d = dest;
+
+	size >>= 2;
+	while (size--)
+		__raw_writel(__raw_readl(source++), d++);
+	return dest;
+}
+
+/*
+ * This function polls the NANDFC to wait for the basic operation to
+ * complete by checking the INT bit of config2 register.
+ */
+static void wait_op_done(struct mxc_nand_host *host, int max_retries,
+				uint16_t param)
+{
+	uint32_t tmp;
+
+	while (max_retries-- > 0) {
+		if (readw(&host->regs->nfc_config2) & NFC_INT) {
+			tmp = readw(&host->regs->nfc_config2);
+			tmp  &= ~NFC_INT;
+			writew(tmp, &host->regs->nfc_config2);
+			break;
+		}
+		udelay(1);
+	}
+	if (max_retries < 0) {
+		MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
+				__func__, param);
+	}
+}
+
+/*
+ * This function issues the specified command to the NAND device and
+ * waits for completion.
+ */
+static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
+{
+	MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
+
+	writew(cmd, &host->regs->nfc_flash_cmd);
+	writew(NFC_CMD, &host->regs->nfc_config2);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, TROP_US_DELAY, cmd);
+}
+
+/*
+ * This function sends an address (or partial address) to the
+ * NAND device. The address is used to select the source/destination for
+ * a NAND command.
+ */
+static void send_addr(struct mxc_nand_host *host, uint16_t addr)
+{
+	MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr);
+
+	writew(addr, &host->regs->nfc_flash_addr);
+	writew(NFC_ADDR, &host->regs->nfc_config2);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, TROP_US_DELAY, addr);
+}
+
+/*
+ * This function requests the NANDFC to initate the transfer
+ * of data currently in the NANDFC RAM buffer to the NAND device.
+ */
+static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
+			int spare_only)
+{
+	MTDDEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);
+
+	writew(buf_id, &host->regs->nfc_buf_addr);
+
+	/* Configure spare or page+spare access */
+	if (!host->pagesize_2k) {
+		uint16_t config1 = readw(&host->regs->nfc_config1);
+		if (spare_only)
+			config1 |= NFC_SP_EN;
+		else
+			config1 &= ~(NFC_SP_EN);
+		writew(config1, &host->regs->nfc_config1);
+	}
+
+	writew(NFC_INPUT, &host->regs->nfc_config2);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, TROP_US_DELAY, spare_only);
+}
+
+/*
+ * Requests NANDFC to initated the transfer of data from the
+ * NAND device into in the NANDFC ram buffer.
+ */
+static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
+		int spare_only)
+{
+	MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
+
+	writew(buf_id, &host->regs->nfc_buf_addr);
+
+	/* Configure spare or page+spare access */
+	if (!host->pagesize_2k) {
+		uint32_t config1 = readw(&host->regs->nfc_config1);
+		if (spare_only)
+			config1 |= NFC_SP_EN;
+		else
+			config1 &= ~NFC_SP_EN;
+		writew(config1, &host->regs->nfc_config1);
+	}
+
+	writew(NFC_OUTPUT, &host->regs->nfc_config2);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, TROP_US_DELAY, spare_only);
+}
+
+/* Request the NANDFC to perform a read of the NAND device ID. */
+static void send_read_id(struct mxc_nand_host *host)
+{
+	uint16_t tmp;
+
+	/* NANDFC buffer 0 is used for device ID output */
+	writew(0x0, &host->regs->nfc_buf_addr);
+
+	/* Read ID into main buffer */
+	tmp = readw(&host->regs->nfc_config1);
+	tmp &= ~NFC_SP_EN;
+	writew(tmp, &host->regs->nfc_config1);
+
+	writew(NFC_ID, &host->regs->nfc_config2);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, TROP_US_DELAY, 0);
+}
+
+/*
+ * This function requests the NANDFC to perform a read of the
+ * NAND device status and returns the current status.
+ */
+static uint16_t get_dev_status(struct mxc_nand_host *host)
+{
+	void __iomem *main_buf = host->regs->main_area1;
+	uint32_t store;
+	uint16_t ret, tmp;
+	/* Issue status request to NAND device */
+
+	/* store the main area1 first word, later do recovery */
+	store = readl(main_buf);
+	/* NANDFC buffer 1 is used for device status */
+	writew(1, &host->regs->nfc_buf_addr);
+
+	/* Read status into main buffer */
+	tmp = readw(&host->regs->nfc_config1);
+	tmp &= ~NFC_SP_EN;
+	writew(tmp, &host->regs->nfc_config1);
+
+	writew(NFC_STATUS, &host->regs->nfc_config2);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, TROP_US_DELAY, 0);
+
+	/*
+	 *  Status is placed in first word of main buffer
+	 * get status, then recovery area 1 data
+	 */
+	ret = readw(main_buf);
+	writel(store, main_buf);
+
+	return ret;
+}
+
+/* This function is used by upper layer to checks if device is ready */
+static int mxc_nand_dev_ready(struct mtd_info *mtd)
+{
+	/*
+	 * NFC handles R/B internally. Therefore, this function
+	 * always returns status as ready.
+	 */
+	return 1;
+}
+
+#ifdef CONFIG_MXC_NAND_HWECC
+static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	/*
+	 * If HW ECC is enabled, we turn it on during init. There is
+	 * no need to enable again here.
+	 */
+}
+
+static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
+				 u_char *read_ecc, u_char *calc_ecc)
+{
+	struct nand_chip *nand_chip = mtd->priv;
+	struct mxc_nand_host *host = nand_chip->priv;
+
+	/*
+	 * 1-Bit errors are automatically corrected in HW.  No need for
+	 * additional correction.  2-Bit errors cannot be corrected by
+	 * HW ECC, so we need to return failure
+	 */
+	uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result);
+
+	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
+		MTDDEBUG(MTD_DEBUG_LEVEL0,
+		      "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
+		return -1;
+	}
+
+	return 0;
+}
+
+static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+				  u_char *ecc_code)
+{
+	return 0;
+}
+#endif
+
+static u_char mxc_nand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd->priv;
+	struct mxc_nand_host *host = nand_chip->priv;
+	uint8_t ret = 0;
+	uint16_t col;
+	uint16_t __iomem *main_buf =
+		(uint16_t __iomem *)host->regs->main_area0;
+	uint16_t __iomem *spare_buf =
+		(uint16_t __iomem *)host->regs->spare_area0;
+	union {
+		uint16_t word;
+		uint8_t bytes[2];
+	} nfc_word;
+
+	/* Check for status request */
+	if (host->status_request)
+		return get_dev_status(host) & 0xFF;
+
+	/* Get column for 16-bit access */
+	col = host->col_addr >> 1;
+
+	/* If we are accessing the spare region */
+	if (host->spare_only)
+		nfc_word.word = readw(&spare_buf[col]);
+	else
+		nfc_word.word = readw(&main_buf[col]);
+
+	/* Pick upper/lower byte of word from RAM buffer */
+	ret = nfc_word.bytes[host->col_addr & 0x1];
+
+	/* Update saved column address */
+	if (nand_chip->options & NAND_BUSWIDTH_16)
+		host->col_addr += 2;
+	else
+		host->col_addr++;
+
+	return ret;
+}
+
+static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd->priv;
+	struct mxc_nand_host *host = nand_chip->priv;
+	uint16_t col, ret;
+	uint16_t __iomem *p;
+
+	MTDDEBUG(MTD_DEBUG_LEVEL3,
+	      "mxc_nand_read_word(col = %d)\n", host->col_addr);
+
+	col = host->col_addr;
+	/* Adjust saved column address */
+	if (col < mtd->writesize && host->spare_only)
+		col += mtd->writesize;
+
+	if (col < mtd->writesize) {
+		p = (uint16_t __iomem *)(host->regs->main_area0 + (col >> 1));
+	} else {
+		p = (uint16_t __iomem *)(host->regs->spare_area0 +
+				((col - mtd->writesize) >> 1));
+	}
+
+	if (col & 1) {
+		union {
+			uint16_t word;
+			uint8_t bytes[2];
+		} nfc_word[3];
+
+		nfc_word[0].word = readw(p);
+		nfc_word[1].word = readw(p + 1);
+
+		nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
+		nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
+
+		ret = nfc_word[2].word;
+	} else {
+		ret = readw(p);
+	}
+
+	/* Update saved column address */
+	host->col_addr = col + 2;
+
+	return ret;
+}
+
+/*
+ * Write data of length len to buffer buf. The data to be
+ * written on NAND Flash is first copied to RAMbuffer. After the Data Input
+ * Operation by the NFC, the data is written to NAND Flash
+ */
+static void mxc_nand_write_buf(struct mtd_info *mtd,
+				const u_char *buf, int len)
+{
+	struct nand_chip *nand_chip = mtd->priv;
+	struct mxc_nand_host *host = nand_chip->priv;
+	int n, col, i = 0;
+
+	MTDDEBUG(MTD_DEBUG_LEVEL3,
+	      "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
+	      len);
+
+	col = host->col_addr;
+
+	/* Adjust saved column address */
+	if (col < mtd->writesize && host->spare_only)
+		col += mtd->writesize;
+
+	n = mtd->writesize + mtd->oobsize - col;
+	n = min(len, n);
+
+	MTDDEBUG(MTD_DEBUG_LEVEL3,
+	      "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
+
+	while (n > 0) {
+		void __iomem *p;
+
+		if (col < mtd->writesize) {
+			p = host->regs->main_area0 + (col & ~3);
+		} else {
+			p = host->regs->spare_area0 -
+						mtd->writesize + (col & ~3);
+		}
+
+		MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
+		      __LINE__, p);
+
+		if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
+			union {
+				uint32_t word;
+				uint8_t bytes[4];
+			} nfc_word;
+
+			nfc_word.word = readl(p);
+			nfc_word.bytes[col & 3] = buf[i++];
+			n--;
+			col++;
+
+			writel(nfc_word.word, p);
+		} else {
+			int m = mtd->writesize - col;
+
+			if (col >= mtd->writesize)
+				m += mtd->oobsize;
+
+			m = min(n, m) & ~3;
+
+			MTDDEBUG(MTD_DEBUG_LEVEL3,
+			      "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
+			      __func__,  __LINE__, n, m, i, col);
+
+			mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
+			col += m;
+			i += m;
+			n -= m;
+		}
+	}
+	/* Update saved column address */
+	host->col_addr = col;
+}
+
+/*
+ * Read the data buffer from the NAND Flash. To read the data from NAND
+ * Flash first the data output cycle is initiated by the NFC, which copies
+ * the data to RAMbuffer. This data of length len is then copied to buffer buf.
+ */
+static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *nand_chip = mtd->priv;
+	struct mxc_nand_host *host = nand_chip->priv;
+	int n, col, i = 0;
+
+	MTDDEBUG(MTD_DEBUG_LEVEL3,
+	      "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
+
+	col = host->col_addr;
+
+	/* Adjust saved column address */
+	if (col < mtd->writesize && host->spare_only)
+		col += mtd->writesize;
+
+	n = mtd->writesize + mtd->oobsize - col;
+	n = min(len, n);
+
+	while (n > 0) {
+		void __iomem *p;
+
+		if (col < mtd->writesize) {
+			p = host->regs->main_area0 + (col & ~3);
+		} else {
+			p = host->regs->spare_area0 -
+					mtd->writesize + (col & ~3);
+		}
+
+		if (((col | (int)&buf[i]) & 3) || n < 4) {
+			union {
+				uint32_t word;
+				uint8_t bytes[4];
+			} nfc_word;
+
+			nfc_word.word = readl(p);
+			buf[i++] = nfc_word.bytes[col & 3];
+			n--;
+			col++;
+		} else {
+			int m = mtd->writesize - col;
+
+			if (col >= mtd->writesize)
+				m += mtd->oobsize;
+
+			m = min(n, m) & ~3;
+			mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
+
+			col += m;
+			i += m;
+			n -= m;
+		}
+	}
+	/* Update saved column address */
+	host->col_addr = col;
+}
+
+/*
+ * Used by the upper layer to verify the data in NAND Flash
+ * with the data in the buf.
+ */
+static int mxc_nand_verify_buf(struct mtd_info *mtd,
+				const u_char *buf, int len)
+{
+	u_char tmp[256];
+	uint bsize;
+
+	while (len) {
+		bsize = min(len, 256);
+		mxc_nand_read_buf(mtd, tmp, bsize);
+
+		if (memcmp(buf, tmp, bsize))
+			return 1;
+
+		buf += bsize;
+		len -= bsize;
+	}
+
+	return 0;
+}
+
+/*
+ * This function is used by upper layer for select and
+ * deselect of the NAND chip
+ */
+static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *nand_chip = mtd->priv;
+	struct mxc_nand_host *host = nand_chip->priv;
+
+	switch (chip) {
+	case -1:
+		/* TODO: Disable the NFC clock */
+		if (host->clk_act)
+			host->clk_act = 0;
+		break;
+	case 0:
+		/* TODO: Enable the NFC clock */
+		if (!host->clk_act)
+			host->clk_act = 1;
+		break;
+
+	default:
+		break;
+	}
+}
+
+/*
+ * Used by the upper layer to write command to NAND Flash for
+ * different operations to be carried out on NAND Flash
+ */
+static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
+				int column, int page_addr)
+{
+	struct nand_chip *nand_chip = mtd->priv;
+	struct mxc_nand_host *host = nand_chip->priv;
+
+	MTDDEBUG(MTD_DEBUG_LEVEL3,
+	      "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
+	      command, column, page_addr);
+
+	/* Reset command state information */
+	host->status_request = false;
+
+	/* Command pre-processing step */
+	switch (command) {
+
+	case NAND_CMD_STATUS:
+		host->col_addr = 0;
+		host->status_request = true;
+		break;
+
+	case NAND_CMD_READ0:
+		host->col_addr = column;
+		host->spare_only = false;
+		break;
+
+	case NAND_CMD_READOOB:
+		host->col_addr = column;
+		host->spare_only = true;
+		if (host->pagesize_2k)
+			command = NAND_CMD_READ0; /* only READ0 is valid */
+		break;
+
+	case NAND_CMD_SEQIN:
+		if (column >= mtd->writesize) {
+			/*
+			 * before sending SEQIN command for partial write,
+			 * we need read one page out. FSL NFC does not support
+			 * partial write. It alway send out 512+ecc+512+ecc ...
+			 * for large page nand flash. But for small page nand
+			 * flash, it does support SPARE ONLY operation.
+			 */
+			if (host->pagesize_2k) {
+				/* call ourself to read a page */
+				mxc_nand_command(mtd, NAND_CMD_READ0, 0,
+						page_addr);
+			}
+
+			host->col_addr = column - mtd->writesize;
+			host->spare_only = true;
+
+			/* Set program pointer to spare region */
+			if (!host->pagesize_2k)
+				send_cmd(host, NAND_CMD_READOOB);
+		} else {
+			host->spare_only = false;
+			host->col_addr = column;
+
+			/* Set program pointer to page start */
+			if (!host->pagesize_2k)
+				send_cmd(host, NAND_CMD_READ0);
+		}
+		break;
+
+	case NAND_CMD_PAGEPROG:
+		send_prog_page(host, 0, host->spare_only);
+
+		if (host->pagesize_2k) {
+			/* data in 4 areas datas */
+			send_prog_page(host, 1, host->spare_only);
+			send_prog_page(host, 2, host->spare_only);
+			send_prog_page(host, 3, host->spare_only);
+		}
+
+		break;
+	}
+
+	/* Write out the command to the device. */
+	send_cmd(host, command);
+
+	/* Write out column address, if necessary */
+	if (column != -1) {
+		/*
+		 * MXC NANDFC can only perform full page+spare or
+		 * spare-only read/write.  When the upper layers
+		 * layers perform a read/write buf operation,
+		 * we will used the saved column adress to index into
+		 * the full page.
+		 */
+		send_addr(host, 0);
+		if (host->pagesize_2k)
+			/* another col addr cycle for 2k page */
+			send_addr(host, 0);
+	}
+
+	/* Write out page address, if necessary */
+	if (page_addr != -1) {
+		/* paddr_0 - p_addr_7 */
+		send_addr(host, (page_addr & 0xff));
+
+		if (host->pagesize_2k) {
+			send_addr(host, (page_addr >> 8) & 0xFF);
+			if (mtd->size >= 0x10000000) {
+				/* paddr_8 - paddr_15 */
+				send_addr(host, (page_addr >> 8) & 0xff);
+				send_addr(host, (page_addr >> 16) & 0xff);
+			} else {
+				/* paddr_8 - paddr_15 */
+				send_addr(host, (page_addr >> 8) & 0xff);
+			}
+		} else {
+			/* One more address cycle for higher density devices */
+			if (mtd->size >= 0x4000000) {
+				/* paddr_8 - paddr_15 */
+				send_addr(host, (page_addr >> 8) & 0xff);
+				send_addr(host, (page_addr >> 16) & 0xff);
+			} else {
+				/* paddr_8 - paddr_15 */
+				send_addr(host, (page_addr >> 8) & 0xff);
+			}
+		}
+	}
+
+	/* Command post-processing step */
+	switch (command) {
+
+	case NAND_CMD_RESET:
+		break;
+
+	case NAND_CMD_READOOB:
+	case NAND_CMD_READ0:
+		if (host->pagesize_2k) {
+			/* send read confirm command */
+			send_cmd(host, NAND_CMD_READSTART);
+			/* read for each AREA */
+			send_read_page(host, 0, host->spare_only);
+			send_read_page(host, 1, host->spare_only);
+			send_read_page(host, 2, host->spare_only);
+			send_read_page(host, 3, host->spare_only);
+		} else {
+			send_read_page(host, 0, host->spare_only);
+		}
+		break;
+
+	case NAND_CMD_READID:
+		host->col_addr = 0;
+		send_read_id(host);
+		break;
+
+	case NAND_CMD_PAGEPROG:
+		break;
+
+	case NAND_CMD_STATUS:
+		break;
+
+	case NAND_CMD_ERASE2:
+		break;
+	}
+}
+
+int board_nand_init(struct nand_chip *this)
+{
+	struct system_control_regs *sc_regs =
+		(struct system_control_regs *)IMX_SYSTEM_CTL_BASE;
+	struct mtd_info *mtd;
+	uint16_t tmp;
+	int err = 0;
+
+	/* structures must be linked */
+	mtd = &host->mtd;
+	mtd->priv = this;
+	host->nand = this;
+
+	/* 5 us command delay time */
+	this->chip_delay = 5;
+
+	this->priv = host;
+	this->dev_ready = mxc_nand_dev_ready;
+	this->cmdfunc = mxc_nand_command;
+	this->select_chip = mxc_nand_select_chip;
+	this->read_byte = mxc_nand_read_byte;
+	this->read_word = mxc_nand_read_word;
+	this->write_buf = mxc_nand_write_buf;
+	this->read_buf = mxc_nand_read_buf;
+	this->verify_buf = mxc_nand_verify_buf;
+
+	host->regs = (struct nfc_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
+	host->clk_act = 1;
+
+#ifdef CONFIG_MXC_NAND_HWECC
+	this->ecc.calculate = mxc_nand_calculate_ecc;
+	this->ecc.hwctl = mxc_nand_enable_hwecc;
+	this->ecc.correct = mxc_nand_correct_data;
+	this->ecc.mode = NAND_ECC_HW;
+	this->ecc.size = 512;
+	this->ecc.bytes = 3;
+	this->ecc.layout = &nand_hw_eccoob;
+	tmp = readw(&host->regs->nfc_config1);
+	tmp |= NFC_ECC_EN;
+	writew(tmp, &host->regs->nfc_config1);
+#else
+	this->ecc.layout = &nand_soft_eccoob;
+	this->ecc.mode = NAND_ECC_SOFT;
+	tmp = readw(&host->regs->nfc_config1);
+	tmp &= ~NFC_ECC_EN;
+	writew(tmp, &host->regs->nfc_config1);
+#endif
+
+	/* Reset NAND */
+	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+	/*
+	 * preset operation
+	 * Unlock the internal RAM Buffer
+	 */
+	writew(0x2, &host->regs->nfc_config);
+
+	/* Blocks to be unlocked */
+	writew(0x0, &host->regs->nfc_unlockstart_blkaddr);
+	writew(0x4000, &host->regs->nfc_unlockend_blkaddr);
+
+	/* Unlock Block Command for given address range */
+	writew(0x4, &host->regs->nfc_wrprot);
+
+	/* NAND bus width determines access funtions used by upper layer */
+	if (readl(&sc_regs->fmcr) & NF_16BIT_SEL)
+		this->options |= NAND_BUSWIDTH_16;
+
+	host->pagesize_2k = 0;
+
+	return err;
+}