Skip to content
Snippets Groups Projects
clock.c 9.91 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Keystone2: pll initialization
     *
     * (C) Copyright 2012-2014
     *     Texas Instruments Incorporated, <www.ti.com>
     *
     * SPDX-License-Identifier:     GPL-2.0+
     */
    
    #include <common.h>
    #include <asm/arch/clock.h>
    #include <asm/arch/clock_defs.h>
    
    
    /* DEV and ARM speed definitions as specified in DEVSPEED register */
    int __weak speeds[DEVSPEED_NUMSPDS] = {
    	SPD1000,
    	SPD1200,
    	SPD1350,
    	SPD1400,
    	SPD1500,
    	SPD1400,
    	SPD1350,
    	SPD1200,
    	SPD1000,
    	SPD800,
    };
    
    const struct keystone_pll_regs keystone_pll_regs[] = {
    	[CORE_PLL]	= {KS2_MAINPLLCTL0, KS2_MAINPLLCTL1},
    	[PASS_PLL]	= {KS2_PASSPLLCTL0, KS2_PASSPLLCTL1},
    	[TETRIS_PLL]	= {KS2_ARMPLLCTL0, KS2_ARMPLLCTL1},
    	[DDR3A_PLL]	= {KS2_DDR3APLLCTL0, KS2_DDR3APLLCTL1},
    	[DDR3B_PLL]	= {KS2_DDR3BPLLCTL0, KS2_DDR3BPLLCTL1},
    
    	[UART_PLL]	= {KS2_UARTPLLCTL0, KS2_UARTPLLCTL1},
    
    inline void pll_pa_clk_sel(void)
    {
    	setbits_le32(keystone_pll_regs[PASS_PLL].reg1, CFG_PLLCTL1_PAPLL_MASK);
    }
    
    
    static void wait_for_completion(const struct pll_init_data *data)
    {
    	int i;
    	for (i = 0; i < 100; i++) {
    		sdelay(450);
    
    		if (!(pllctl_reg_read(data->pll, stat) & PLLSTAT_GOSTAT_MASK))
    
    static inline void bypass_main_pll(const struct pll_init_data *data)
    
    	pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC_MASK |
    			   PLLCTL_PLLEN_MASK);
    
    	/* 4 cycles of reference clock CLKIN*/
    	sdelay(340);
    }
    
    static void configure_mult_div(const struct pll_init_data *data)
    {
    	u32 pllm, plld, bwadj;
    
    
    	pllm = data->pll_m - 1;
    
    	plld = (data->pll_d - 1) & CFG_PLLCTL0_PLLD_MASK;
    
    	/* Program Multiplier */
    	if (data->pll == MAIN_PLL)
    		pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
    
    	clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
    			CFG_PLLCTL0_PLLM_MASK,
    			pllm << CFG_PLLCTL0_PLLM_SHIFT);
    
    	/* Program BWADJ */
    	bwadj = (data->pll_m - 1) >> 1; /* Divide pllm by 2 */
    	clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
    			CFG_PLLCTL0_BWADJ_MASK,
    			(bwadj << CFG_PLLCTL0_BWADJ_SHIFT) &
    			CFG_PLLCTL0_BWADJ_MASK);
    	bwadj = bwadj >> CFG_PLLCTL0_BWADJ_BITS;
    	clrsetbits_le32(keystone_pll_regs[data->pll].reg1,
    			CFG_PLLCTL1_BWADJ_MASK, bwadj);
    
    	/* Program Divider */
    	clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
    			CFG_PLLCTL0_PLLD_MASK, plld);
    }
    
    void configure_main_pll(const struct pll_init_data *data)
    {
    	u32 tmp, pllod, i, alnctl_val = 0;
    	u32 *offset;
    
    	pllod = data->pll_od - 1;
    
    	/* 100 micro sec for stabilization */
    	sdelay(210000);
    
    	tmp = pllctl_reg_read(data->pll, secctl);
    
    	/* Check for Bypass */
    	if (tmp & SECCTL_BYPASS_MASK) {
    		setbits_le32(keystone_pll_regs[data->pll].reg1,
    			     CFG_PLLCTL1_ENSAT_MASK);
    
    		bypass_main_pll(data);
    
    		/* Powerdown and powerup Main Pll */
    		pllctl_reg_setbits(data->pll, secctl, SECCTL_BYPASS_MASK);
    		pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
    		/* 5 micro sec */
    		sdelay(21000);
    
    		pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
    	} else {
    		bypass_main_pll(data);
    	}
    
    	configure_mult_div(data);
    
    	/* Program Output Divider */
    	pllctl_reg_rmw(data->pll, secctl, SECCTL_OP_DIV_MASK,
    		       ((pllod << SECCTL_OP_DIV_SHIFT) & SECCTL_OP_DIV_MASK));
    
    	/* Program PLLDIVn */
    	wait_for_completion(data);
    	for (i = 0; i < PLLDIV_MAX; i++) {
    		if (i < 3)
    			offset = pllctl_reg(data->pll, div1) + i;
    		else
    			offset = pllctl_reg(data->pll, div4) + (i - 3);
    
    		if (divn_val[i] != -1) {
    			__raw_writel(divn_val[i] | PLLDIV_ENABLE_MASK, offset);
    			alnctl_val |= BIT(i);
    		}
    	}
    
    	if (alnctl_val) {
    		pllctl_reg_setbits(data->pll, alnctl, alnctl_val);
    
    		/*
    		 * Set GOSET bit in PLLCMD to initiate the GO operation
    		 * to change the divide
    		 */
    
    		pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GOSTAT_MASK);
    
    		wait_for_completion(data);
    
    	/* Reset PLL */
    	pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
    	sdelay(21000);	/* Wait for a minimum of 7 us*/
    	pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
    	sdelay(105000);	/* Wait for PLL Lock time (min 50 us) */
    
    	/* Enable PLL */
    	pllctl_reg_clrbits(data->pll, secctl, SECCTL_BYPASS_MASK);
    	pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN_MASK);
    }
    
    void configure_secondary_pll(const struct pll_init_data *data)
    {
    	int pllod = data->pll_od - 1;
    
    
    	/* Enable Glitch free bypass for ARM PLL */
    	if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
    		clrbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
    
    
    	/* Enable Bypass mode */
    	setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_ENSAT_MASK);
    	setbits_le32(keystone_pll_regs[data->pll].reg0,
    		     CFG_PLLCTL0_BYPASS_MASK);
    
    	configure_mult_div(data);
    
    	/* Program Output Divider */
    	clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
    			CFG_PLLCTL0_CLKOD_MASK,
    			(pllod << CFG_PLLCTL0_CLKOD_SHIFT) &
    			CFG_PLLCTL0_CLKOD_MASK);
    
    	/* Reset PLL */
    	setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
    	/* Wait for 5 micro seconds */
    	sdelay(21000);
    
    	/* Select the Output of PASS PLL as input to PASS */
    
    	if (data->pll == PASS_PLL && cpu_is_k2hk())
    		pll_pa_clk_sel();
    
    
    	clrbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
    	/* Wait for 500 * REFCLK cucles * (PLLD + 1) */
    	sdelay(105000);
    
    	/* Switch to PLL mode */
    	clrbits_le32(keystone_pll_regs[data->pll].reg0,
    		     CFG_PLLCTL0_BYPASS_MASK);
    
    
    	/* Select the Output of ARM PLL as input to ARM */
    	if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
    		setbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
    
    void init_pll(const struct pll_init_data *data)
    {
    	if (data->pll == MAIN_PLL)
    		configure_main_pll(data);
    	else
    		configure_secondary_pll(data);
    
    
    	/*
    	 * This is required to provide a delay between multiple
    	 * consequent PPL configurations
    	 */
    	sdelay(210000);
    }
    
    
    void init_plls(void)
    
    	struct pll_init_data *data;
    	int pll;
    
    	for (pll = MAIN_PLL; pll < MAX_PLL_COUNT; pll++) {
    		data = get_pll_init_data(pll);
    		if (data)
    			init_pll(data);
    	}
    
    static int get_max_speed(u32 val, u32 speed_supported, int *spds)
    
    	/* Left most setbit gives the speed */
    	for (speed = DEVSPEED_NUMSPDS; speed >= 0; speed--) {
    		if ((val & BIT(speed)) & speed_supported)
    
    	/* If no bit is set, return minimum speed */
    	if (cpu_is_k2g())
    		return SPD200;
    	else
    		return SPD800;
    
    }
    
    static inline u32 read_efuse_bootrom(void)
    {
    
    	if (cpu_is_k2hk() && (cpu_revision() <= 1))
    		return __raw_readl(KS2_REV1_DEVSPEED);
    	else
    		return __raw_readl(KS2_EFUSE_BOOTROM);
    
    int get_max_arm_speed(int *spds)
    
    	u32 armspeed = read_efuse_bootrom();
    
    	armspeed = (armspeed & DEVSPEED_ARMSPEED_MASK) >>
    		    DEVSPEED_ARMSPEED_SHIFT;
    
    
    	return get_max_speed(armspeed, ARM_SUPPORTED_SPEEDS, spds);
    
    int get_max_dev_speed(int *spds)
    
    	u32 devspeed = read_efuse_bootrom();
    
    	devspeed = (devspeed & DEVSPEED_DEVSPEED_MASK) >>
    		    DEVSPEED_DEVSPEED_SHIFT;
    
    
    	return get_max_speed(devspeed, DEV_SUPPORTED_SPEEDS, spds);
    
    
    /**
     * pll_freq_get - get pll frequency
     * @pll:	pll identifier
     */
    static unsigned long pll_freq_get(int pll)
    {
    	unsigned long mult = 1, prediv = 1, output_div = 2;
    	unsigned long ret;
    	u32 tmp, reg;
    
    	if (pll == MAIN_PLL) {
    
    		ret = get_external_clk(sys_clk);
    
    		if (pllctl_reg_read(pll, ctl) & PLLCTL_PLLEN_MASK) {
    			/* PLL mode */
    			tmp = __raw_readl(KS2_MAINPLLCTL0);
    			prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
    			mult = ((tmp & CFG_PLLCTL0_PLLM_HI_MASK) >>
    				CFG_PLLCTL0_PLLM_SHIFT |
    				(pllctl_reg_read(pll, mult) &
    				 PLLM_MULT_LO_MASK)) + 1;
    			output_div = ((pllctl_reg_read(pll, secctl) &
    				       SECCTL_OP_DIV_MASK) >>
    				       SECCTL_OP_DIV_SHIFT) + 1;
    
    			ret = ret / prediv / output_div * mult;
    		}
    	} else {
    		switch (pll) {
    		case PASS_PLL:
    
    			ret = get_external_clk(pa_clk);
    
    			reg = KS2_PASSPLLCTL0;
    			break;
    		case TETRIS_PLL:
    
    			ret = get_external_clk(tetris_clk);
    
    			reg = KS2_ARMPLLCTL0;
    			break;
    		case DDR3A_PLL:
    
    			ret = get_external_clk(ddr3a_clk);
    
    			reg = KS2_DDR3APLLCTL0;
    			break;
    		case DDR3B_PLL:
    
    			ret = get_external_clk(ddr3b_clk);
    
    			reg = KS2_DDR3BPLLCTL0;
    			break;
    
    		case UART_PLL:
    
    			ret = get_external_clk(uart_clk);
    
    			reg = KS2_UARTPLLCTL0;
    			break;
    
    		default:
    			return 0;
    		}
    
    		tmp = __raw_readl(reg);
    
    		if (!(tmp & CFG_PLLCTL0_BYPASS_MASK)) {
    			/* Bypass disabled */
    			prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
    			mult = ((tmp & CFG_PLLCTL0_PLLM_MASK) >>
    				CFG_PLLCTL0_PLLM_SHIFT) + 1;
    			output_div = ((tmp & CFG_PLLCTL0_CLKOD_MASK) >>
    				      CFG_PLLCTL0_CLKOD_SHIFT) + 1;
    			ret = ((ret / prediv) * mult) / output_div;
    		}
    	}
    
    	return ret;
    }
    
    
    unsigned long ks_clk_get_rate(unsigned int clk)
    
    {
    	unsigned long freq = 0;
    
    	switch (clk) {
    	case core_pll_clk:
    		freq = pll_freq_get(CORE_PLL);
    		break;
    	case pass_pll_clk:
    		freq = pll_freq_get(PASS_PLL);
    		break;
    	case tetris_pll_clk:
    		if (!cpu_is_k2e())
    			freq = pll_freq_get(TETRIS_PLL);
    		break;
    	case ddr3a_pll_clk:
    		freq = pll_freq_get(DDR3A_PLL);
    		break;
    	case ddr3b_pll_clk:
    		if (cpu_is_k2hk())
    			freq = pll_freq_get(DDR3B_PLL);
    		break;
    
    	case uart_pll_clk:
    		if (cpu_is_k2g())
    			freq = pll_freq_get(UART_PLL);
    		break;
    
    	case sys_clk0_1_clk:
    	case sys_clk0_clk:
    		freq = pll_freq_get(CORE_PLL) / pll0div_read(1);
    		break;
    	case sys_clk1_clk:
    	return pll_freq_get(CORE_PLL) / pll0div_read(2);
    		break;
    	case sys_clk2_clk:
    		freq = pll_freq_get(CORE_PLL) / pll0div_read(3);
    		break;
    	case sys_clk3_clk:
    		freq = pll_freq_get(CORE_PLL) / pll0div_read(4);
    		break;
    	case sys_clk0_2_clk:
    
    		freq = ks_clk_get_rate(sys_clk0_clk) / 2;
    
    		break;
    	case sys_clk0_3_clk:
    
    		freq = ks_clk_get_rate(sys_clk0_clk) / 3;
    
    		break;
    	case sys_clk0_4_clk:
    
    		freq = ks_clk_get_rate(sys_clk0_clk) / 4;
    
    		break;
    	case sys_clk0_6_clk:
    
    		freq = ks_clk_get_rate(sys_clk0_clk) / 6;
    
    		break;
    	case sys_clk0_8_clk:
    
    		freq = ks_clk_get_rate(sys_clk0_clk) / 8;
    
    		break;
    	case sys_clk0_12_clk:
    
    		freq = ks_clk_get_rate(sys_clk0_clk) / 12;
    
    		break;
    	case sys_clk0_24_clk:
    
    		freq = ks_clk_get_rate(sys_clk0_clk) / 24;
    
    		break;
    	case sys_clk1_3_clk:
    
    		freq = ks_clk_get_rate(sys_clk1_clk) / 3;
    
    		break;
    	case sys_clk1_4_clk:
    
    		freq = ks_clk_get_rate(sys_clk1_clk) / 4;
    
    		break;
    	case sys_clk1_6_clk:
    
    		freq = ks_clk_get_rate(sys_clk1_clk) / 6;
    
    		break;
    	case sys_clk1_12_clk:
    
    		freq = ks_clk_get_rate(sys_clk1_clk) / 12;